Refinar búsqueda
Resultados 321-330 de 680
Waste to Wealth: An Approach Towards Sustainable Construction from Pollutants Texto completo
2024
Kasturima Das, Bikramjit Goswami and Girija T. R.
The global construction industry faces significant challenges related to environmental sustainability and resource scarcity. Researchers are increasingly exploring innovative approaches to repurpose waste materials, aiming to mitigate environmental pollution while producing value-added construction materials. This paper reviews the sustainability of current methodologies for synthesizing construction materials from pollutants, considering industrial by-products, post-consumer waste, and pollutants as potential feedstocks. The evaluation focuses on various recycling, upcycling, and bioconversion techniques, assessing their environmental and technical feasibility. The paper also discusses case studies of successful implementations and emerging trends in the field to highlight practical applications and future research directions. Ultimately, the paper advocates for sustainable practices in the construction sector by promoting a circular economy model, where waste is transformed into valuable resources, fostering wealth development.
Mostrar más [+] Menos [-]Using Immobilized Algae (Scenendesmus quadricauda) to Reduce Copper Element Toxicity in Common Carp Fish (Cyprinus carpio) Texto completo
2024
Athraa Ismaal, Jasim M. Salman and Moayed J. Yass
The study assessed the efficiency of immobilized algae (Scenedesmus quadricauda (Turpin) Brébisson) in treating copper toxicity in common carp fish. Acute toxicity of copper towards carp fish was determined. Fish were exposed in aqueous tanks to different heavy metal concentrations (10, 15, 25, and 35 ppm) for 96 h to examine their response. The lethal concentration (LC50) of copper for common carp over 96 h was found to be 1.4 ppm, with fish mortality increasing gradually with higher metal concentrations. Subsequently, half of the LC50 concentration (0.7 ppm) was used as a chronic toxicity concentration, and fish were treated for 21 days to assess copper accumulation in their gills and muscles. Copper concentration in gills on day 5 of the experiment was 16.89 ± 2.2 mg.kg-1 (Mean ± S.D), a significant increase from in muscles, which recorded 10.72 ± 1.1 mg.kg-1 (Mean ± S.D). On day 21, the copper concentration decreased significantly in both gills (4.73 ± 0.5 mg.kg-1) and muscles (8.4 ± 4.5 mg.kg-1) compared to the control group (significant LSD 0.05). But the copper and algae group recorded on day 21 of the experiment (a significant decrease LSD 0.05) in both the gills (mg.kg-1) Mean± S.D) (4.73±0.5) and the muscles (mg.kg-1) Mean± S.D) (8.4±4.5) compared to the copper group. The removal rate in the gills was 75.57%, and in the muscles was 21.17%. Therefore, treatment with immobilized algae is an efficient and promising method for treating copper toxicity in aquatic environments.
Mostrar más [+] Menos [-]Understanding the Patch Dynamics of a few Homogenous and Heterogenous Vegetational Patches Texto completo
2024
Rekha G. Dhammar, Kunal N. Odedra and B. A. Jadeja
Variations in size and shape distinguish vegetation patches across different ecosystems. Nonetheless, recent research highlights notable parallels in the dynamics of these patches and the mechanisms governing their formation and persistence. Two primary types, banded and spotted vegetation, characterized by their patch shapes, stem from shared mechanisms, albeit each type is predominantly influenced by a distinct driver. Banded vegetation emerges when water primarily facilitates the redistribution of materials and propagules, whereas spotted vegetation arises when wind serves as the primary redistributing force. Overall, the analysis underscores how patchy vegetation structures bolster primary production. According to Patch Dynamics theory, vegetation can be categorized into homogeneous and heterogeneous patches, with seasonal conditions playing a pivotal role in the coexistence of various vegetation types. Understanding mechanisms of coexistence necessitates a thorough grasp of the ecophysiological responses of dominant species to different patch types. Consequently, this study aimed to discern the ecophysiological reactions of species to two distinct patch categories. Throughout the examination of Patch Dynamics, both patch species exhibited the highest photosynthetic capacity within their respective patches. Parameters such as Leaf Area Index (LAI), the number of individuals (N), biomass, height (h), weight, and others manifested changes across patch types. Notably, species within the banded patch exhibited heightened sensitivity and more substantial fluctuations in their values compared to those in the spotted patch. These differential responses to distinct patches offer insights into potential mechanisms facilitating species coexistence.
Mostrar más [+] Menos [-]Geopolymers as Supplementary Cementitious Materials to Reduce Carbon Dioxide Emissions Texto completo
2024
A. Mushtaq, S. Ali, A. H. Chaudhry, N. Sial, M. Aslam and H. Batool
Geopolymers are an alternative and sustainable substitute for ordinary Portland cement (OPC) Geopolymers are being investigated as supplementary cementitious materials to lower carbon dioxide emissions in the building sector. To lower emissions, geopolymer concrete also improves the environment by substituting OPC with supplementary cementitious materials. In addition to keeping waste out of landfills, it produces lightweight, environmentally friendly building materials that fit the circular economy model. Geopolymer concrete reduces global warming as compared to traditional OPC concrete, offering sustainable solutions for construction applications and mitigating carbon dioxide emissions, thereby promoting sustainable development in the construction sector. In the building sector, geopolymer materials provide environmentally friendly substitutes for OPC materials by enhancing water absorption, lowering carbon dioxide emissions, and fostering environmental sustainability. In terms of mechanical qualities, robustness, and environmental sustainability, geopolymers have demonstrated encouraging outcomes.
Mostrar más [+] Menos [-]Estimation of Hydraulic Conductivity Using Geoelectrical and Infiltrometer Observations Texto completo
2024
Novia Anggita, Dwinanti Rika Marthanty and Abdul Halim Hamdany
Hydraulic conductivity (K) as a parameter in surface and subsurface water interaction is an important study to research. Field observations using geoelectrics with the Schlumberger configuration and using infiltrometers with double ring were chosen as methods to estimate the (K) which aims to recognize the characteristics of the relationship between (K) obtained from different observation results. The estimated (K) obtained from infiltrometer observations are quite significant compared to geoelectric observations which range from 2.715 × 10-7 m/s to 6.132 × 10-7 m/s, while geoelectrical values range from 1.965 × 10-8 m/s to 3.896 × 10-9 m/s. In this study, the soil conditions in geoelectric observations were carried out in an unsaturated state and infiltrometer observations were in a saturated state. This soil condition is used as one of the reasons for interpreting the research results in this study, that the hydraulic conductivity in unsaturated soil conditions decreases compared to saturated soil.
Mostrar más [+] Menos [-]Assessing Phytoremediation Potential of Aloe barbadensis, Chrysopogon zizanioides and Ocimum tenuiflorum for Sustainable Removal of Heavy Metals from Contaminated Soil Texto completo
2024
S. P. Sangeetha, S. Sona, Nabam Tapung, Abhishek Kumar and Suraj Kumar
India’s fast industrialization and population expansion have resulted in heavy metal accumulation from many operations, which has caused massive waste generation and poisoning of soils. Therefore, it is necessary to design reclamation to improve th T.Ne soil. Phytoremediation presents itself as a viable, economical, and environmentally sustainable solution to this problem. This study was carried out by using plants namely, aloe-vera (Aloe-Barbadensis), tulsi (Ocimum Tenuiflorium), and vetiver (Chrysopogon Zizanoides) plants which were planted in a simulated soil of Cd, Zn and Pb, for 4 weeks. The sample of plant and soil were taken in 9 different pots, (15 cm diameter and 25 cm height) among 9 potted soils one will be tested as a controlled sample. An aqueous solution of lead, cadmium and zinc were added separately to the dry soil samples. The moisture level of the soil was maintained to near field water capacity (35.6%) and equilibrated for two weeks. The saplings of vetiver grass, aloe vera and tulsi were selected and pruned (the shoots were originally 20 cm high and the roots 8 cm long), and then transplanted into the pots. The AAS test was conducted after 4 weeks of growing in simulated soil. Tulsi demonstrated the highest efficacy in reducing Zn concentrations from 300 mg/kg to 188.3 mg/kg, followed by vetiver (179.3 mg/kg) and Aloe vera (158.3 mg/kg). Similarly, for Pb, tulsi exhibited the most substantial reduction (from 600 mg/kg to 188.3 mg/kg), followed by vetiver (164.3 mg/kg) and Aloe vera (179.6 mg/kg). Regarding Cd, tulsi reduced concentrations from 80 mg/kg to 18.62 mg/kg, while vetiver achieved a 17.62 mg/kg reduction. The result highlights Tulsi’s superior remediation potential, attributed to its efficient heavy metal uptake and translocation mechanisms. Thus, using these plants in the phytoremediation process, the heavy metals are extracted more economically than other plants. This technique highlights the innate ability of hyper-accumulator plant species, which flourish in situations high in heavy metals, to extract contaminants from contaminated soil.
Mostrar más [+] Menos [-]Enhancing Food Security Through Sustainable Agriculture: Investigating the Allelopathic Effects of Sorghum on Weed Management in Field Pea (Pisum sativum var. arvense) Texto completo
2024
Prantick Patra, Anita Jaswal and Iza Fatima
Allelopathy can be a viable approach to address the issues of environmental degradation by reducing the use of herbicides and herbicide-resistant weeds. Allelopathic crop residues have a lot of potential for improving soil quality and suppressing weed growth. A field experiment at an agronomic research farm, Lovely Professional University in Phagwara, Punjab, examined the effects of water extracts and crop residues from sorghum on the population of weeds, indices of weed management, and the productivity of field peas. The experiment during the year 2022-2023 comprised in randomized block design with 2 levels of Sorghum water extract (1:10, 1:20 w/v), 3 levels of Sorghum stalk soil incorporation @ 2, 4, 6 Mg.ha-1, Sorghum surface mulching at 10tonnes ha-1, Field pea and rabi sorghum intercropping at 2:1, Weedy check and hand weeding. The findings showed that the sorghum surface mulching, addition of sorghum water extract, and sorghum stalk incorporation significantly altered the dynamics of weeds which was comparable with hand weeding. In the case of weed density (9.17 no.m-2), weed fresh (7.66g), and dry weight (3.0g) hand weeding gave the best result which was followed by sorghum surface mulching with 10.77 weeds no.m-2, 10.11 g weed fresh weight and 4.26gm weed dry weight. The highest weed control efficiency (80.9%) was recorded in hand weeding which was followed by sorghum water extract (1:10) and sorghum stalk incorporation (4 Mg.ha-1). The weed management index, weed persistence index, and agronomic management index showed an inverse relationship with weed control efficiency. Hand weeding (20, 40, 60 DAS) gave the highest grain yield (2897 kg.ha-1) of field pea followed by Sorghum surface mulching. Yield attributes were calculated which prescribed that all the treatments significantly reduced the weed infestation and increased the yield attributes over a weedy check. Hand weeding gave the best result, but it is not economical due to the intensive labor requirement. Initiating sustainable weed control and significantly improving the nutrient content of field peas can be achieved through sorghum surface mulching, sorghum stalk incorporation at 4 Mg.ha-1, and sorghum water extract (1:10). These practices can contribute to environmentally friendly and sustainable agriculture.
Mostrar más [+] Menos [-]Assessing Tourists’ Willingness to Pay for Sustainable Tourism in Petra, a Contingent Valuation Study Texto completo
2024
I. N. Abuamoud
Tourism is a vital economic sector globally, but its growth has raised concerns about its environmental impact. The study utilized the Contingent Valuation Method and Willingness to Pay to estimate additional costs tourists would pay for sustainable tourism in Petra. A survey of 446 international tourists examined their willingness to pay higher fees for improved services, providing insights into sustainable tourism management and pricing policies. Results reveal a positive inclination towards sustainable practices, with a majority expressing willingness to pay additional fees for entry, accommodation in eco-lodges, and electric transportation services within Petra. Cultural preservation also emerged as a priority, with tourists willing to pay for cultural events and donate towards site maintenance. However, interest in culinary experiences and professional photography services was comparatively lower. Regression analyses indicate age and marital status as significant predictors of WTP, emphasizing the importance of tailored marketing strategies. Recommendations include diversifying revenue streams, integrating cultural experiences, and fostering collaborations between stakeholders to promote sustainable tourism practices. This study contributes to understanding tourists’ preferences and behaviors regarding sustainable tourism, offering insights for the management and marketing of heritage sites like Petra while balancing economic growth with environmental conservation.
Mostrar más [+] Menos [-]Delineation of Groundwater Potential Zones Using GIS and Analytic Hierarchy Process in Parts of Varanasi and Chandauli Districts Texto completo
2024
Pooja Tripathi, Birendra Pratap, Sanjay Kumar Tiwari, Rajnish Kumar, Sandeep Maddheshiya, Purnendu Shekhar Shukla and Mohammad Ashraf
This study employs Remote Sensing (RS) and Geographic Information Systems (GIS) to delineate groundwater potential zones. Various thematic layers, including geomorphology, land use and land cover, geology, rainfall, slope, soil composition, drainage density, and the Topographic Wetness Index (TWI), were integrated using a weighted linear combination in the GIS platform’s spatial analyst tool. The Analytic Hierarchy Process (AHP) was used to assign different ranks to these layers and their sublayers. Groundwater potential zones were categorized as poor (16.54%, 96.25 km²), moderate (67.20%, 391.13 km²), and good (16.26%, 94.62 km²). Validation involved observing water levels in various wells within the study area, with the results’ reliability assessed using a Receiver Operating Characteristic (ROC) curve, demonstrating an accuracy of 88%. The study area faces rapid urbanization and industrialization, stressing the aquifer’s groundwater availability. Identifying groundwater potential zones is thus crucial for effective groundwater development and management.
Mostrar más [+] Menos [-]Utilization of Plastic Waste and Dry leaves in Brick Manufacturing Texto completo
2024
P. Muthupriya and B. Vignesh Kumar
The utilization of plastic waste and dry leaves in bricks is a sustainable approach to reducing environmental pollution and managing waste. This study aims to investigate the feasibility of incorporating plastic wastes and dry leaves into the manufacturing of bricks, as well as the potential benefits of using such bricks. The study involves the collection of plastic wastes and dry leaves, sorting and cleaning them before mixing them with clay, sand, and cement in varying proportions. The mixtures are then compressed and molded into bricks, which are allowed to dry and cure before being tested for their physical and mechanical properties. To create plastic soil blocks, the soil was added to the molten plastic paste along with dry leaves in the following ratios: 1.5:1.5:0.5 (plastic, soil, and dry leaves, respectively). Results of the study showed that the inclusion of plastic wastes and dry leaves in brick production can lead to significant improvements in properties such as compressive strength, water absorption, and durability. Furthermore, the use of such bricks can help to reduce the amount of plastic waste and dry leaves in the environment, and also provide a sustainable alternative to traditional bricks that use finite natural resources. In conclusion, the utilization of plastic wastes and dry leaves in bricks is a promising approach toward sustainable construction. Further research is needed to optimize the proportions of the materials used and to investigate the long-term durability of the bricks under different environmental conditions.
Mostrar más [+] Menos [-]