Refinar búsqueda
Resultados 331-340 de 3,625
Arsenic(V) adsorption-desorption in agricultural and mine soils: Effects of organic matter addition and phosphate competition Texto completo
2016
Arco-Lázaro, Elena | Agudo, Inés | Clemente, Rafael | Bernal, M Pilar
High total and bioavailable concentrations of As in soils represent a potential risk for groundwater contamination and entry in the food chain. The use of organic amendments in the remediation of As-contaminated soils has been found to produce distinct effects on the solubility of As in the soil. Therefore, knowledge about As adsorption-desorption processes that govern its solubility in soil is of relevance in order to predict the behaviour of this element during these processes. In this paper, the objective was to determine As adsorption and desorption in four different soils, with and without compost addition, and also in competition with phosphate, through the determination of sorption isotherms. Batch experiments were carried out using three soils affected differently by previous mining activity of the Sierra Minera of La Unión-Cartagena (SE Spain) and an agricultural soil from Segovia province (central Spain). Adsorption was higher in the mining soils (and highest in the acidic one) than in the agricultural soils, although the latter were not affected negatively by organic matter or phosphate competition for sorption sites. The results show that As adsorption in most soils, both with and without compost, fitted better a multimolecular layer model (Freundlich), whereas As adsorption in competition with P fitted a monolayer model (Langmuir). Moreover, the use of compost and phosphate reduced the adsorption of As in the mining soils, while in the agricultural soils compost increased their low adsorption capacity. Therefore, the use of compost can be a good option to favour As immobilisation in soils of low adsorption, but knowledge of the soil composition will be crucial to predict the effects of organic amendments on As solubility in soils and its associated environmental risk.
Mostrar más [+] Menos [-]Concern-driven integrated approaches for the grouping, testing and assessment of nanomaterials Texto completo
2016
Landsiedel, Robert
NM's potential to induce adverse effects in humans or the environment is being addressed in numerous research projects, and methods and tools for NM hazard identification and risk assessment are advancing. This article describes how integrated approaches for the testing and assessment of NMs can ensure the safety of nanomaterials, while adhering to the 3Rs principle.
Mostrar más [+] Menos [-]In situ investigation into surfactant effects on the clearance of polycyclic aromatic hydrocarbons adsorbed onto soybean leaf surfaces Texto completo
2016
Sun, Haifeng | Wang, Weipeng | Guo, Shuai | Zhang, Yong
The partitioning of polycyclic aromatic hydrocarbons (PAHs) in agricultural crop leaves, contributes to the exposure of organisms to these chemicals through the dietary pathway. To precisely predict the fate of PAHs and crop safety, the clearance of three-ringed phenanthrene (Phe) and four-ringed pyrene (Pyr) adsorbed individually onto living soybean leaf surfaces, as well as the effects of two surfactants, namely, an ionic surfactant (sodium dodecylbenzene sulfonate, SDBS) and a non-ionic surfactant (polyoxyethyleneglycol dodecyl ether, Brij35), were investigated in situ using the laser-induced nanosecond time-resolved fluorescence (LITRF) method. The effects varied significantly with surfactant types primarily in terms of the elimination rates and the final residues of PAH chemicals. With increasing SDBS and Brij35 concentrations, volatilization rate constants (kC) of both Phe and Pyr initially decreased at fast rates and then at more moderate rates later on, resulting from the plasticizing effect of surfactants adsorbed on leaf surfaces. In addition, the photolysis rate constants (kP) decreased with the presence of SDBS but increased with the presence of Brij35. Overall, the total clearance rates of PAHs (kT) adsorbed onto living soybean leaf surfaces were inhibited by the presence of SDBS but promoted by the presence of Brij35. These observations show that surfactants may significantly alter the clearance of PAHs in agricultural systems, and the potential impact of surfactants on crop safety is closely related to surfactant types in natural environments.
Mostrar más [+] Menos [-]Use of soybean meal and papain to partially replace animal protein for culturing three marine fish species: Fish growth and water quality Texto completo
2016
Mo, W.Y. | Lau, R.S.S. | Kwok, A.C.K. | Wong, M.H.
The main aim of this study was to investigate the feasibility of using soybean meal added with papain to replace half of the fishmeal used in the moist pellets (49% fishmeal and 45% trash fish) developed by the Hong Kong Agriculture, Fisheries and Conservation Department (AFCD) for culturing marine fish. Gold-lined seabream (Rhabdosargus sarba), brown spotted grouper (Epinephelus bleekeri) and pompano (Trachinotus blochii) were farmed at one of the research stations (Kat-O) of AFCD, for a period of 340 days. Results indicated that diets containing papain resulted in better fish growth (reflected by relative weight gain and feed conversion ratio) than diets without papain. In general, wet weight gain of fish depends on the amount of papain added in diet rather than the diet composition. Soybean used in conjunction with papain also contributed to a more effective growth than fish fed with the moist pellets alone. A laboratory experiment (using tanks) was conducted to study the effects of the diets on concentrations of ammonia, nitrite and nitrate in the tank water. Results showed that concentrations of ammonia and nitrate were significantly lower (p < 0.05) when the fish were fed with papain-supplemented (with or without soybean meal) diets. It is envisaged that by using plant protein incorporated with enzymes could promote better growth of marine fish and lower the adverse impact of trash fish and fishmeal on water quality of the mariculture zones.
Mostrar más [+] Menos [-]Current levels and trends of selected EU Water Framework Directive priority substances in freshwater fish from the German environmental specimen bank Texto completo
2016
Fliedner, Annette | Lohmann, Nina | Rüdel, Heinz | Teubner, Diana | Wellmitz, Jörg | Koschorreck, Jan
Under the German environmental specimen bank programme bream (Abramis brama) were sampled in six German rivers and analysed for the priority hazardous substances dicofol, hexabromocyclododecane (HBCDD), hexachlorobenzene (HCB), hexachlorobutadiene (HCBD), heptachlor + heptachlor epoxide (HC + HCE), polybrominated diphenylethers (PBDEs), polychlorinated dibenzo-p-dioxins and -furans and dioxin-like polychlorinated biphenyls (PCDD/Fs + dl-PCBs), and perfluorooctane sulfonic acid (PFOS). The aim was to assess compliance with the EU Water Framework Directive environmental quality standards for biota (EQSBiota) for the year 2013, and to analyse temporal trends for those substances that are of special concern. General compliance was observed for dicofol, HBCDD and HCBD whereas PBDEs exceeded the EQSBiota at all sites. For all other substances compliance in 2013 varied between locations. No assessment was possible for HC + HCE at some sites where the analytical sensitivity was not sufficient to cover the EQSBiota. Trend analysis showed decreasing linear trends for HCB and PFOS at most sampling sites between 1995 and 2014 indicating that the emission reduction measures are effective. Mostly decreasing trends or constant levels were also observed for PCDD/Fs and dl-PCBs. In contrast, increasing trends were detected for PBDEs and HBCDD which were especially pronounced at one Saar site located downstream of the industries and conurbation of Saarbrücken and Völklingen. This finding points to new sources of emissions which should be followed in the coming years.
Mostrar más [+] Menos [-]Contaminants of emerging concern in a large temperate estuary Texto completo
2016
Meador, James P. | Yeh, Andrew | Young, Graham | Gallagher, Evan P.
This study was designed to assess the occurrence and concentrations of a broad range of contaminants of emerging concern (CECs) from three local estuaries within a large estuarine ecosystem. In addition to effluent from two wastewater treatment plants (WWTP), we sampled water and whole-body juvenile Chinook salmon (Oncorhynchus tshawytscha) and Pacific staghorn sculpin (Leptocottus armatus) in estuaries receiving effluent. We analyzed these matrices for 150 compounds, which included pharmaceuticals, personal care products (PPCPs), and several industrial compounds. Collectively, we detected 81 analytes in effluent, 25 analytes in estuary water, and 42 analytes in fish tissue. A number of compounds, including sertraline, triclosan, estrone, fluoxetine, metformin, and nonylphenol were detected in water and tissue at concentrations that may cause adverse effects in fish. Interestingly, 29 CEC analytes were detected in effluent and fish tissue, but not in estuarine waters, indicating a high potential for bioaccumulation for these compounds. Although concentrations of most detected analytes were present at relatively low concentrations, our analysis revealed that overall CEC inputs to each estuary amount to several kilograms of these compounds per day. This study is unique because we report on CEC concentrations in estuarine waters and whole-body fish, which are both uncommon in the literature. A noteworthy finding was the preferential bioaccumulation of CECs in free-ranging juvenile Chinook salmon relative to staghorn sculpin, a benthic species with relatively high site fidelity.
Mostrar más [+] Menos [-]Tailpipe emissions from gasoline direct injection (GDI) and port fuel injection (PFI) vehicles at both low and high ambient temperatures Texto completo
2016
Zhu, Rencheng | Hu, Jingnan | Bao, Xiaofeng | He, Liqiang | Lai, Yitu | Zu, Lei | Li, Yufei | Su, Sheng
Vehicle emissions are greatly influenced by various factors that are related to engine technology and driving conditions. Only the fuel injection method and ambient temperature are investigated in this research. Regulated gaseous and particulate matter (PM) emissions from two advanced gasoline-fueled vehicles, one with direct fuel injection (GDI) and the other with port fuel injection (PFI), are tested with conventional gasoline and ethanol-blended gasoline (E10) at both −7 °C and 30 °C. The total particle number (PN) concentrations and size distributions are monitored with an Electrical Low Pressure Impactor (ELPI+). The solid PN concentrations are measured with a condensation particle counter (CPC) after removing volatile matters through the particle measurement program (PMP) system. The results indicate that decreasing the ambient temperature from 30 °C to −7 °C significantly increases the fuel consumption and all measured emissions except for NOx. The GDI vehicle exhibits lower fuel consumption than the PFI vehicle but emits more total hydrocarbons (THC), PM mass and solid PN emissions at 30 °C. The adaptability of GDI technology appears to be better than that of PFI technology at low ambient temperature. For example, the CO, THC and PM mass emission factors of the PFI vehicle are higher than those of the GDI vehicle and the solid PN emission factors are comparable in the cold-start tests at −7 °C. Specifically, during start-up the particulate matter emissions of the PFI are much higher than the GDI. In most cases, the geometric mean diameter (GMD) of the accumulation mode particles is 58–86 nm for both vehicles, and the GMD of the nucleation mode particles is 10–20 nm. The results suggest that the gaseous and particulate emissions from the PFI vehicle should not be neglected compared to those from the GDI vehicle especially in a cold environment.
Mostrar más [+] Menos [-]Is standard deviation of daily PM2.5 concentration associated with respiratory mortality? Texto completo
2016
Lin, Hualiang | Ma, Wenjun | Qiu, Hong | Vaughn, Michael G. | Nelson, Erik J. | Qian, Zhengmin | Tian, Linwei
Studies on health effects of air pollution often use daily mean concentration to estimate exposure while ignoring daily variations. This study examined the health effects of daily variation of PM2.5. We calculated daily mean and standard deviations of PM2.5 in Hong Kong between 1998 and 2011. We used a generalized additive model to estimate the association between respiratory mortality and daily mean and variation of PM2.5, as well as their interaction. We controlled for potential confounders, including temporal trends, day of the week, meteorological factors, and gaseous air pollutants. Both daily mean and standard deviation of PM2.5 were significantly associated with mortalities from overall respiratory diseases and pneumonia. Each 10 μg/m3 increment in daily mean concentration at lag 2 day was associated with a 0.61% (95% CI: 0.19%, 1.03%) increase in overall respiratory mortality and a 0.67% (95% CI: 0.14%, 1.21%) increase in pneumonia mortality. And a 10 μg/m3 increase in standard deviation at lag 1 day corresponded to a 1.40% (95% CI: 0.35%, 2.46%) increase in overall respiratory mortality, and a 1.80% (95% CI: 0.46%, 3.16%) increase in pneumonia mortality. We also observed a positive but non-significant synergistic interaction between daily mean and variation on respiratory mortality and pneumonia mortality. However, we did not find any significant association with mortality from chronic obstructive pulmonary diseases. Our study suggests that, besides mean concentration, the standard deviation of PM2.5 might be one potential predictor of respiratory mortality in Hong Kong, and should be considered when assessing the respiratory effects of PM2.5.
Mostrar más [+] Menos [-]Gas flaring and resultant air pollution: A review focusing on black carbon Texto completo
2016
Fawole, Olusegun G. | Cai, X.-M. | MacKenzie, A.R.
Gas flaring is a prominent source of VOCs, CO, CO2, SO2, PAH, NOX and soot (black carbon), all of which are important pollutants which interact, directly and indirectly, in the Earth’s climatic processes. Globally, over 130 billion cubic metres of gas are flared annually. We review the contribution of gas flaring to air pollution on local, regional and global scales, with special emphasis on black carbon (BC, “soot”). The temporal and spatial characteristics of gas flaring distinguishes it from mobile combustion sources (transport), while the open-flame nature of gas flaring distinguishes it from industrial point-sources; the high temperature, flame control, and spatial compactness distinguishes gas flaring from both biomass burning and domestic fuel-use. All of these distinguishing factors influence the quantity and characteristics of BC production from gas flaring, so that it is important to consider this source separately in emissions inventories and environmental field studies. Estimate of the yield of pollutants from gas flaring have, to date, paid little or no attention to the emission of BC with the assumption often being made that flaring produces a smokeless flame. In gas flares, soot yield is known to depend on a number of factors, and there is a need to develop emission estimates and modelling frameworks that take these factors into consideration. Hence, emission inventories, especially of the soot yield from gas flaring should give adequate consideration to the variation of fuel gas composition, and to combustion characteristics, which are strong determinants of the nature and quantity of pollutants emitted. The buoyant nature of gas flaring plume, often at temperatures in the range of 2000 K, coupled with the height of the stack enables some of the pollutants to escape further into the free troposphere aiding their long-range transport, which is often not well-captured by model studies.
Mostrar más [+] Menos [-]Facile synthesis of 55Fe-labeled well-dispersible hematite nanoparticles for bioaccumulation studies in nanotoxicology Texto completo
2016
Huang, Bin | Xiao, Lin | Yang, Liu-Yan | Ji, Rong | Miao, Ai-Jun
Although water-dispersible engineered nanoparticles (ENPs) have a wide range of applications, the ENPs used in many nanotoxicological studies tend to form micron-sized aggregates in the exposure media and thus cannot reflect the toxicity of real nanoparticles. Here we described the synthesis of bare hematite nanoparticles (HNPs-0) and two poly(acrylic acid) (PAA)-coated forms (HNPs-1 and HNPs-2). All three HNPs were well dispersed in deionized water, but HNPs-0 quickly aggregated in the three culture media tested. By contrast, the suspensions of HNPs-1 and HNPs-2 remained stable, with negligible amounts of PAA and Fe3+ liberated from either one under the investigated conditions. To better quantify the accumulation of the coated HNPs, a relatively innocuous 55Fe-labeled form of HNPs-2 was synthesized as an example and its accumulation in three phytoplankton species was tested. Consistent with the uptake kinetics model for conventional pollutants, the cellular accumulation of HNPs-2 increased linearly with exposure time for two of the three phytoplankton species. These results demonstrate the utility of 55Fe-labeled well-dispersible HNPs as a model material for nanoparticle bioaccumulation studies in nanotoxicology.
Mostrar más [+] Menos [-]