Refinar búsqueda
Resultados 381-390 de 4,367
Effects of triazole fungicides on androgenic disruption and CYP3A4 enzyme activity Texto completo
2017
Lv, Xuan | Pan, Liumeng | Wang, Jiaying | Lü, Liping | Yan, Weilin | Zhu, Yanye | Xu, Yiwen | Guo, Ming | Zhuang, Shulin
Triazole fungicides are widely used as broad-spectrum fungicides, non-steroidal antiestrogens and for various industrial applications. Their residues have been frequently detected in multiple environmental and human matrices. The increasingly reported toxicity incidents have led triazole fungicides as emerging contaminants of environmental and public health concern. However, whether triazole fungicides behave as endocrine disruptors by directly mimicking environmental androgens/antiandrogens or exerting potential androgenic disruption indirectly through the inhibition of cytochrome P450 (CYP450) enzyme activity is yet an unresolved question. We herein evaluated five commonly used triazole fungicides including bitertanol, hexaconazole, penconazole, tebuconazole and uniconazole for the androgenic and anti-androgenic activity using two-hybrid recombinant human androgen receptor (AR) yeast bioassay and comparatively evaluated their effects on enzymatic activity of CYP3A4 by P450-Glo™ CYP3A4 bioassay. All five fungicides showed moderate anti-androgenic activity toward human AR with the IC50 ranging from 9.34 μM to 79.85 μM. The anti-androgenic activity remained no significant change after the metabolism mediated by human liver microsomes. These fungicides significantly inhibited the activity of CYP3A4 at the environmental relevant concentrations and the potency ranks as tebuconazole > uniconazole > hexaconazole > penconazole > bitertanol with the corresponding IC50 of 0.81 μM, 0.93 μM, 1.27 μM, 2.22 μM, and 2.74 μM, respectively. We found that their anti-androgenic activity and the inhibition potency toward CYP3A4 inhibition was significantly correlated (R2 between 0.83 and 0.97, p < 0.001). Our results indicated that the risk assessment of triazole pesticides and structurally similar chemicals should fully consider potential androgenic disrupting effects and the influences on the activity of CYP450s.
Mostrar más [+] Menos [-]Contributions and source identification of biogenic and anthropogenic hydrocarbons to secondary organic aerosols at Mt. Tai in 2014 Texto completo
2017
Zhu, Yanhong | Yang, Lingxiao | Kawamura, Kimitaka | Chen, Jianmin | Ono, Kaori | Wang, Xinfeng | Xue, Likun | Wang, Wenxing
Ambient fine particulate matter (PM2.5) and volatile organic compounds (VOCs) collected at Mt. Tai in summer 2014 were analysed and the data were used to identify the contribution of biogenic and anthropogenic hydrocarbons to secondary organic aerosols (SOA) and their sources and potential source areas in high mountain regions. Compared with those in 2006, the 2014 anthropogenic SOA tracers in PM2.5 aerosols and VOC species related to vehicular emissions exhibited higher concentrations, whereas the levels of biogenic SOA tracers were lower, possibly due to decreased biomass burning. Using the SOA tracer and parameterisation method, we estimated the contributions from biogenic and anthropogenic VOCs, respectively. The results showed that the average concentration of biogenic SOA was 1.08 ± 0.51 μg m−3, among which isoprene SOA tracers were dominant. The anthropogenic VOC-derived SOA were 7.03 ± 1.21 μg m−3 and 1.92 ± 1.34 μg m−3 under low- and high-NOx conditions, respectively, and aromatics made the greatest contribution. However, the sum of biogenic and anthropogenic SOA only contributed 18.1–49.1% of the total SOA. Source apportionment by positive matrix factorisation (PMF) revealed that secondary oxidation and biomass burning were the major sources of biogenic SOA tracers. Anthropogenic aromatics mainly came from solvent use, fuel and plastics combustion and vehicular emissions. However, for > C6 alkanes and cycloalkanes, vehicular emissions and fuel and plastics combustion were the most important contributors. The potential source contribution function (PSCF) identified the Bohai Sea Region (BSR) as the major source area for organic aerosol compounds and VOC species at Mt. Tai.
Mostrar más [+] Menos [-]PM2.5 in the Yangtze River Delta, China: Chemical compositions, seasonal variations, and regional pollution events Texto completo
2017
Ming, Lili | Jin, Ling | Li, Jun | Fu, Pingqing | Yang, Wenyi | Liu, Di | Zhang, Gan | Wang, Zifa | Li, Xiangdong
Fine particle (PM2.5) samples were collected simultaneously at three urban sites (Shanghai, Nanjing, and Hangzhou) and one rural site near Ningbo in the Yangtze River Delta (YRD) region, China, on a weekly basis from September 2013 to August 2014. In addition, high-frequency daily sampling was conducted in Shanghai and Nanjing for one month during each season. Severe regional PM2.5 pollution episodes were frequently observed in the YRD, with annual mean concentrations of 94.6 ± 55.9, 97.8 ± 40.5, 134 ± 54.3, and 94.0 ± 57.6 μg m−3 in Shanghai, Nanjing, Hangzhou, and Ningbo, respectively. The concentrations of PM2.5 and ambient trace metals at the four sites showed clear seasonal trends, with higher concentrations in winter and lower concentrations in summer. In Shanghai, similar seasonal patterns were found for organic carbon (OC), elemental carbon (EC), and water-soluble inorganic ions (K+, NH4+, Cl−, NO3−, and SO42-). Air mass backward trajectory and potential source contribution function (PSCF) analyses implied that areas of central and northern China contributed significantly to the concentration and chemical compositions of PM2.5 in Shanghai during winter. Three heavy pollution events in Shanghai were observed during autumn and winter. The modelling results of the Nested Air Quality Prediction Modeling System (NAQPMS) showed the sources and transport of PM2.5 in the YRD during the three pollution processes. The contribution of secondary species (SOC, NH4+, NO3−, and SO42-) in pollution event (PE) periods was much higher than in BPE (before pollution event) and APE (after pollution event) periods, suggesting the importance of secondary aerosol formation during the three pollution events. Furthermore, the bioavailability of Cu, and Zn in the wintertime PM2.5 samples from Shanghai was much higher during the pollution days than during the non-pollution days.
Mostrar más [+] Menos [-]A small-scale, portable method for extracting microplastics from marine sediments Texto completo
2017
Coppock, Rachel L. | Cole, Matthew | Lindeque, Penelope K. | Queirós, Ana M. | Galloway, Tamara S.
Microplastics (plastic particles, 0.1 μm–5 mm in size) are widespread marine pollutants, accumulating in benthic sediments and shorelines the world over. To gain a clearer understanding of microplastic availability to marine life, and the risks they pose to the health of benthic communities, ecological processes and food security, it is important to obtain accurate measures of microplastic abundance in marine sediments. To date, methods for extracting microplastics from marine sediments have been disadvantaged by complexity, expense, low extraction efficiencies and incompatibility with very fine sediments.Here we present a new, portable method to separate microplastics from sediments of differing types, using the principle of density floatation. The Sediment-Microplastic Isolation (SMI) unit is a custom-built apparatus which consistently extracted microplastics from sediments in a single step, with a mean efficiency of 95.8% (±SE 1.6%; min 70%, max 100%). Zinc chloride, at a density of 1.5 g cm−3, was deemed an effective and relatively inexpensive floatation media, allowing fine sediment to settle whilst simultaneously enabling floatation of dense polymers. The method was validated by artificially spiking sediment with low and high density microplastics, and its environmental relevance was further tested by extracting plastics present in natural sediment samples from sites ranging in sediment type; fine silt/clay (mean size 10.25 ± SD 3.02 μm) to coarse sand (mean size 149.3 ± SD 49.9 μm). The method presented here is cheap, reproducible and is easily portable, lending itself for use in the laboratory and in the field, eg. on board research vessels. By employing this method, accurate estimates of microplastic type, distribution and abundance in natural sediments can be achieved, with the potential to further our understanding of the availability of microplastics to benthic organisms.
Mostrar más [+] Menos [-]Fate and O-methylating detoxification of Tetrabromobisphenol A (TBBPA) in two earthworms (Metaphire guillelmi and Eisenia fetida) Texto completo
2017
Chen, Xian | Gu, Jianqiang | Wang, Yongfeng | Gu, Xueyuan | Zhao, Xiaopeng | Wang, Xiaorong | Ji, Rong
Tetrabromobisphenol A (TBBPA) is the world's most widely used brominated flame retardant but there is growing concern about its fate and toxicity in terrestrial organisms. In this study, two ecologically different earthworms, Metaphire guillelmi and Eisenia fetida, were exposed to soil spiked with 14C-labeled TBBPA for 21 days. M. guillelmi accumulated more TBBPA than E. fetida, evidenced by a 2.7-fold higher 14C-uptake rate and a 1.3-fold higher biota-soil accumulation factor. Considerable amounts of bound residues (up to 40% for M. guillelmi and 18% for E. fetida) formed rapidly in the bodies of both earthworms. 14C accumulated mostly in the gut of M. guillemi and in the skin of E. fetida, suggesting that its uptake by M. guillelmi was mainly via gut processes whereas in E. fetida epidermal adsorption predominated. The TBBPA transformation potential was greater in M. guillelmi than in E. fetida, since only 5% vs. 34% of extractable 14C remained as the parent compound after 21 days of exposure. Besides polar metabolites, the major metabolites in both earthworms were TBBPA mono- and dimethyl ethers (O-methylation products of TBBPA). Acute toxicity assessments using filter paper and natural soil tests showed that the methylation metabolites were much less toxic than the parent TBBPA to both earthworms. It indicated that earthworms used O-methylation to detoxify TBBPA, and M. guillelmi exhibited the higher detoxification ability than E. fetida. These results imply that if only the free parent compound TBBPA is measured, not only bioaccumulation may be underestimated but also its difference between earthworm species may be misestimated. The species-dependent fate of TBBPA may provide a better indicator of the differing sensitivities of earthworms to this environmental contaminant.
Mostrar más [+] Menos [-]Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: Effects of dissolved oxygen Texto completo
2017
Zou, Xiaoyan | Li, Penghui | Lou, Jie | Fu, Xiaoyan | Zhang, Hongwu
Silver nanoparticles (AgNPs) are increasingly used in various commercial products. This increased use raises ecological concerns because of the large release of AgNPs into the environment. Once released, the local water chemistry has the potential to influence the environmental fates and behaviors of AgNPs. The impacts of dissolved oxygen and natural organic matter (NOM) on the dissolution and stability of AgNPs were investigated in synthetic and natural freshwaters for 7 days. In synthetic freshwater, the aggregation of AgNPs occurred due to the compression of the electric double layer, accompanied by the dissolution of AgNPs. However, once oxygen was removed, the highest dissolved Ag (Agdis) concentration decreased from 356.5 μg/L to 272.1 μg/L, the pH of the AgNP suspensions increased from less than 7.6 to more than 8.4, and AgNPs were regenerated by the reduction of released Ag+ by citrate. The addition of NOM mitigated aggregation, inhibited oxidative dissolution and induced the transformation of AgNPs into Ag2S due to the formation of NOM-adsorbed layers, the reduction of Ag+ by NOM, and the high affinity of sulfur-enriched species in NOM for Ag. Likewise, in oxygen-depleted natural freshwaters, the inhibition of oxidative dissolution was obtained in comparison with oxygenated freshwaters, showing a decrease in the maximum Agdis concentration from 137.6 and 57.0 μg/L to 83.3 and 42.4 μg/L from two natural freshwater sites. Our results suggested that aggregation and dissolution of AgNPs in aquatic environments depend on the chemical composition, where oxygen-depleted freshwaters more significantly increase the colloidal stability. In comparison with oxic conditions, anoxic conditions were more favorable to the regeneration of AgNPs by reducing species (e.g., citrate and NOM) and enhanced the stability of nanoparticles. This indicates that some AgNPs will be more stable for long periods in oxygen-deprived freshwaters, and pose more serious environmental risks than that in oxygenated freshwaters.
Mostrar más [+] Menos [-]Temporal variability in aerosol characteristics and its radiative properties over Patiala, northwestern part of India: Impact of agricultural biomass burning emissions Texto completo
2017
Sharma, D. | Srivastava, A.K. | Ram, K. | Singh, A. | Singh, D.
A comprehensive measurements of aerosol optical depth (AOD), particulate matter (PM) and black carbon (BC) mass concentrations have been carried out over Patiala, a semi-urban site in northwest India during October 2008 to September 2010. The measured aerosol data was incorporated in an aerosol optical model to estimate various aerosol optical parameters, which were subsequently used for radiative forcing estimation. The measured AOD at 500 nm (AOD500) shows a significant seasonal variability, with maximum value of 0.81 during post-monsoon (PoM) and minimum of 0.56 during winter season. The Ångström exponent (α) has higher values (i.e. more fine-mode fraction) during the PoM/winter periods, and lower (i.e. more coarse-mode fraction) during pre-monsoon (PrM). In contrast, turbidity coefficient (β) exhibits an opposite trend to α during the study period. BC mass concentration varies from 2.8 to 13.9 μg m⁻³ (mean: 6.5 ± 3.2 μg m⁻³) during the entire study period, with higher concentrations during PoM/winter and lower during PrM/monsoon seasons. The average single scattering albedo (SSA at 500 nm) values are 0.70, 0.72, 0.82 and 0.75 during PoM, winter, PrM and monsoon seasons, respectively. However, inter-seasonal and inter-annual variability in measured aerosol parameters are statistically insignificant at Patiala. These results suggest strong changes in emission sources, aerosol composition, meteorological parameters as well as transport of aerosols over the station. Higher values of AOD, α and BC, along with lower SSA during PoM season are attributed to agriculture biomass burning emissions over and around the station. The estimated aerosol radiative forcing within the atmosphere is positive (i.e. warming) during all the seasons with higher values (∼60 Wm⁻²) during PoM–08/PoM–09 and lower (∼40 Wm⁻²) during winter–09/PrM–10. The present study highlights the role of BC aerosols from agricultural biomass burning emissions during post-monsoon season for atmospheric warming at Patiala.
Mostrar más [+] Menos [-]The role of IL-6 released from pulmonary epithelial cells in diesel UFP-induced endothelial activation Texto completo
2017
Bengalli, Rossella | Longhin, Eleonora | Marchetti, Sara | Proverbio, Maria C. | Battaglia, Cristina | Camatini, Marina
Diesel exhaust particles (DEP) and their ultrafine fraction (UFP) are known to induce cardiovascular effects in exposed subjects. The mechanisms leading to these outcomes are still under investigation, but the activation of respiratory endothelium is likely to be involved. Particles translocation through the air-blood barrier and the release of mediators from the exposed epithelium have been suggested to participate in the process. Here we used a conditioned media in vitro model to investigate the role of epithelial-released mediators in the endothelial cells activation.Diesel UFP were sampled from a Euro 4 vehicle run over a chassis dyno and lung epithelial BEAS-2B cells were exposed for 20 h (dose 5 μg/cm2). The exposure media were collected and used for endothelial HPMEC-ST1.6R cells treatment for 24 h. The processes related to oxidative stress and inflammation were investigated in the epithelial cells, accordingly to the present knowledge on DEP toxicity. The release of IL-6 and VEGF was significantly augmented in diesel exposed cells. In endothelial cells, VCAM-1 and ICAM-1 adhesion molecules levels were increased after exposure to the conditioned media. By interfering with IL-6 binding to its endothelial receptor, we demonstrate the role of this interleukin in inducing the endothelial response.
Mostrar más [+] Menos [-]Assessing the hydrogeochemical processes affecting groundwater pollution in arid areas using an integration of geochemical equilibrium and multivariate statistical techniques Texto completo
2017
El Alfy, Mohamed | Lashin, Aref | Abdalla, Fathy | Al-Bassam, Abdulaziz
Rapid economic expansion poses serious problems for groundwater resources in arid areas, which typically have high rates of groundwater depletion. In this study, integration of hydrochemical investigations involving chemical and statistical analyses are conducted to assess the factors controlling hydrochemistry and potential pollution in an arid region. Fifty-four groundwater samples were collected from the Dhurma aquifer in Saudi Arabia, and twenty-one physicochemical variables were examined for each sample. Spatial patterns of salinity and nitrate were mapped using fitted variograms. The nitrate spatial distribution shows that nitrate pollution is a persistent problem affecting a wide area of the aquifer. The hydrochemical investigations and cluster analysis reveal four significant clusters of groundwater zones. Five main factors were extracted, which explain >77% of the total data variance. These factors indicated that the chemical characteristics of the groundwater were influenced by rock–water interactions and anthropogenic factors. The identified clusters and factors were validated with hydrochemical investigations. The geogenic factors include the dissolution of various minerals (calcite, aragonite, gypsum, anhydrite, halite and fluorite) and ion exchange processes. The anthropogenic factors include the impact of irrigation return flows and the application of potassium, nitrate, and phosphate fertilizers. Over time, these anthropogenic factors will most likely contribute to further declines in groundwater quality.
Mostrar más [+] Menos [-]Warming modulates the effects of the endocrine disruptor progestin levonorgestrel on the zebrafish fitness, ovary maturation kinetics and reproduction success Texto completo
2017
Cardoso, P.G. | Rodrigues, D. | Madureira, T.V. | Oliveira, N. | Rocha, M.J. | Rocha, E.
Interactive effects between multiple stressors, namely climate drivers (e.g., temperature) and chemical pollution (e.g., endocrine disruptors) are poorly studied. Here, it was for the first time evaluated the combinatory effects of temperature and a synthetic progestin, levonorgestrel (LNG), on the fitness and reproductive-related endpoints of zebrafish (Danio rerio). A multi-factorial design was implemented by manipulating both temperature [setting as baseline an ambient temperature of 27 °C, against warming (+3 °C)] and LNG levels (10 ngL−1 and 1000 ngL−1). Groups of males and females were exposed sub-acutely, for 21-days. Increased temperature caused an overall decrease in the females’ gonadosomatic index (GSI), during the pre-reproduction phase, LNG did not affect GSI. In addition, fecundity (number of ovulated eggs) was negatively affected by both temperature and LNG, being the effect of the latter more intense. Fish exposed to the highest LNG concentration (at both temperatures) did not reproduce, but also in those exposed to the lowest dose of progestin at a higher temperature, a complete reproductive failure occurred. These results reflect what was observed in the stereological analysis of the ovary maturation stages prior to reproduction. Accordingly, the higher the LNG concentration, the lower the degree of maturation of the ovary. This was exacerbated by the higher temperature. As to embryonated eggs, they hatched significantly faster at higher temperatures, but exposure to 10 ngL−1 of LNG (at 27 °C) reduced significantly the hatching rate, comparing to control. Further, the recrudescence of the ovary 48 h after spawning seems to be not affected by both stressors. Our data suggest that in a future scenario of global warming and synthetic hormones exposure, the reproduction of fish species, such as the zebrafish, can be endangered, which can put at risk their success, and consequently affect the structure and functioning of associated aquatic ecosystems.
Mostrar más [+] Menos [-]