Refinar búsqueda
Resultados 391-400 de 4,023
Emission patterns and risk assessment of polybrominated diphenyl ethers and bromophenols in water and sediments from the Beijiang River, South China
2016
Xiong, Jukun | Li, Guiying | An, Taicheng | Zhang, Chaosheng | Wei, Chaohai
To reveal the emission patterns of brominated flame retardants (BFRs) in the Beijiang River, South China, concentrations of polybrominated diphenyl ethers (PBDEs) and phenolic BFRs (2,4,6-tribromophenol (TBP), pentabromophenol (PeBP), tetrabromobisphenol A (TBBPA)), and bisphenol A (BPA) in water and sediments were simultaneously measured, and the geographic information system (GIS) were applied to analyse their emission patterns. Results showed that PBDEs, TBP, PeBP, TBBPA and BPA were ubiquitous in the water and sediment samples collected from the Beijiang River. However, most of the concentrations were very low or below the detection limits (DL). In water, Σ20PBDEs (sum of all 20 PBDEs congeners) levels ranged from < DL to 232 pg L−1, with the predominant congeners containing low bromine contents. The levels of TBP, PeBP, TBBPA and BPA in water were lower than 810 pg L−1. In sediments, Σ20PBDEs varied from 260 to 5640 pg g−1 dry weight (d.w.), with the predominant congeners containing high bromine contents. The levels of TBP, PeBP, TBBPA and BPA were lower than 600 pg g−1 d.w.. Risk assessments indicated that the water and sediments at the sampling locations imposed no estrogenic risk (E2EQ < 1.0 ng E2 L−1), and the eco-toxicity assessment at three trophic levels also showed no risk at all sampling sites in water (RQTotal < 1.0), but with a potential eco-toxicity at some sampling points in sediments (1.0<RQTotal < 10.0).
Mostrar más [+] Menos [-]Concentrations and patterns of hydroxylated polybrominated diphenyl ethers and polychlorinated biphenyls in arctic foxes (Vulpes lagopus) from Svalbard
2016
Routti, Heli | Andersen, Martin S. | Fuglei, Eva | Polder, Anuschka | Yoccoz, Nigel G.
Concentrations and patterns of hydroxylated (OH) polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) were investigated in liver from arctic foxes (Vulpes lagopus) sampled from Svalbard 1997–2011 (n = 100). The most important OH-PBDE in the arctic foxes was 6-OH-BDE47 detected in 24% of the samples. Relationships between 6-OH-BDE47, δ13C and BDE47 suggest that 6-OH-BDE47 residues in arctic foxes are related to marine dietary input, while the relative importance of the metabolic/natural origin of this compound remains unclear. 4-OH-CB187 and 4-OH-CB146 were the main OH-PCBs among the analyzed compounds. The OH-PCB pattern in the present arctic foxes indicates that arctic foxes have a capacity to biotransform a wide range of PCBs of different structures. Formation and retention of OH-PCBs was tightly related to PCB exposure. Furthermore, ΣOH-PCB concentrations were four times higher in the leanest compared to the fattest foxes. Concentrations of 4-OH-CB187 and 4-OH-CB146 among the highest contaminated arctic foxes were similar to the previously reported concentrations for polar bears. Given the high endocrine disruptive potential of OH-PCBs, we suggest that endocrine system may be affected by the relatively high OH-PCB residues in the Svalbard arctic fox population.
Mostrar más [+] Menos [-]Impact of chloride on denitrification potential in roadside wetlands
2016
Lancaster, Nakita A. | Bushey, Joseph T. | Tobias, Craig R. | Song, Bongkeun | Vadas, Timothy M.
Developed landscapes are exposed to changes in hydrology and water chemistry that limit their ability to mitigate detrimental impacts to coastal water bodies, particularly those that result from stormwater runoff. The elevated level of impervious cover increases not only runoff but also contaminant loading of nutrients, metals, and road salt used for deicing to water bodies. Here we investigate the impact that road salt has on denitrification in roadside environments. Sediments were collected from a series of forested and roadside wetlands and acclimated with a range of Cl− concentrations from 0 to 5000 mg L−1 for 96 h. Denitrification rates were measured by the isotope pairing technique using 15N–NO3−, while denitrifying community structures were compared using terminal restriction fragment length polymorphism (T-RFLP) of nitrous oxide reductase genes (nosZ). Chloride significantly (p < 0.05) inhibited denitrification in forested wetlands at a Cl− dosage of 2500 or 5000 mg L−1, but the decrease in denitrification rates was less and not significant for the roadside wetlands historically exposed to elevated concentrations of Cl−. The difference could not be attributed to other significant changes in conditions, such as DOC concentrations, N species concentrations, or pH levels. Denitrifying communities, as measured by T-RFs of the nosZ gene, in the roadside wetlands with elevated concentration of Cl− were distinctly different and more diverse compared to forested wetlands, and also different in roadside wetlands after 96 h exposures to Cl−. The shifts in denitrifying communities seem to minimize the decrease in denitrification rates in the wetlands previously exposed to Cl. As development results in more Cl− use and exposure to a broad range of natural or manmade wetland structures, an understanding of the seasonal effect of Cl on denitrification processes in these systems would aid in design or mitigation of the effects on N removal rates.
Mostrar más [+] Menos [-]Chemical composition of scales generated from oil industry and correlation to radionuclide contents and gamma-ray measurements of 210Pb
2016
Al Attar, Lina | Safia, Bassam | Abdul Ghani, Basem
Scale generated from the maintenance of equipment contaminated by naturally occurring radioactive materials may contain also chemical components that cause hazardous pollution to human health and the environment. This study spotlights the characterisation of chemical pollutants in scales in relation to home-made comparison samples as no reference material for such waste exists. Analysis by energy dispersive x-ray fluorescence, with accuracy and precision better than 90%, revealed that barium was the most abundant element in scale samples, ranging from 1.4 to 38.2%. The concentrations of the toxic elements such as lead and chromium were as high as 2.5 and 1.2% respectively. Statistically, high correlation was observed between the concentration of Ba and Sr, sample density, radionuclide contents (210Pb and 226Ra) and self-attenuation factor used for the radio-measurements. However, iron showed a reverse correlation. Interpretation of data with regards to the mineralogical components indicated that 226Ra and 210Pb co-precipitated with the insoluble salt Ba0.75Sr0.25SO4. Since both Ba and Sr have high Z, samples of high density (ρ) were accompanied with high values of self-attenuation correction factors (Cf) for the emitted radiation; correlation matrix of Pearson reached 0.935 between ρ and Cf. An attempt to eliminate the effect of the elemental composition and improve gamma measurements of 210Pb activity concentration in scale samples was made, which showed no correction for self-attenuation was needed when sample densities were in the range 1.0–1.4 g cm−3. For denser samples, a mathematical model was developed. Accurate determinations of radionuclide and chemical contents of scale would facilitate future Environmental Impact Assessment for the petroleum industry.
Mostrar más [+] Menos [-]An optimum city size? The scaling relationship for urban population and fine particulate (PM2.5) concentration
2016
Han, Lijian | Zhou, Weiqi | Pickett, Steward T.A. | Li, Weifeng | Li, Li
We utilize the distribution of PM2.5 concentration and population in large cities at the global scale to illustrate the relationship between urbanization and urban air quality. We found: 1) The relationship varies greatly among continents and countries. Large cities in North America, Europe, and Latin America have better air quality than those in other continents, while those in China and India have the worst air quality. 2) The relationships between urban population size and PM2.5 concentration in large cities of different continents or countries were different. PM2.5 concentration in large cities in North America, Europe, and Latin America showed little fluctuation or a small increasing trend, but those in Africa and India represent a “U” type relationship and in China represent an inverse “U” type relationship. 3) The potential contribution of population to PM2.5 concentration was higher in the large cities in China and India, but lower in other large cities.
Mostrar más [+] Menos [-]Seasonal accumulation of persistent organic pollutants on a high altitude glacier in the Eastern Alps
2016
Kirchgeorg, T. | Dreyer, A. | Gabrielli, P. | Gabrieli, J. | Thompson, L.G. | Barbante, C. | Ebinghaus, R.
The seasonal accumulations of perfluorinated substances (PFAS), polybrominated diphenyl ethers (PBDE) and polycyclic aromatic hydrocarbons (PAH) were measured in a 10 m shallow firn core from a high altitude glacier at Mt. Ortles (Italy, 3830 m above sea level) in South Tyrol in the Italian Eastern Alps. The most abundant persistent organic pollutants of each group were perfluorobutanoic acid (PFBA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA) (for PFASs); BDE 47, BDE 99, BDE 209 (for PBDEs) and phenanthrene (PHE), fluoranthene (FLA) and pyrene (PYR) (for PAHs). All compounds show different extents of seasonality, with higher accumulation during summer time compared to winter. This seasonal difference mainly reflects meteorological conditions with a low and stable atmospheric boundary layer in winter and strong convective activity in summer, transformation processes during the transport of chemicals and/or post-depositional alterations. Change in the composition of the water-soluble PFCAs demonstrates the influence of meltwater percolation through the firn layers.
Mostrar más [+] Menos [-]Long-term microplastic retention causes reduced body condition in the langoustine, Nephrops norvegicus
2016
Welden, Natalie A.C. | Cowie, Phillip R.
Microplastic represents a rising proportion of marine litter and is widely distributed throughout a range of marine habitats. Correspondingly, the number of reports of species containing microplastics increases annually. Nephrops norvegicus in the Firth of Clyde have previously been shown to retain large aggregations of microplastic fibres. The potential for N. norvegicus to retain plastic over an extended time period increases the likelihood of any associated negative impacts to the individual. This study represents the longest observation of the impacts of microplastic retention in invertebrates. We exposed N. norvegicus to plastic over eight months to determine the impacts of extended exposure. Over this period we compared the feeding rate, body mass, and nutritional state of plastic-fed N. norvegicus to that of fed and starved control groups. Following the experimental period, the plastic-fed langoustine contained microplastic aggregations comparable to those of small individuals from the Clyde Sea Area. Comparisons between fed, unfed and plastic-fed individuals indicated a reduction in feeding rate, body mass, and metabolic rate as well as catabolism of stored lipids in plastic contaminated animals. We conclude that N. norvegicus exposed to high levels of environmental microplastic pollution may experience reduced nutrient availability. This can result in reduced population stability and may affect the viability of local fisheries.
Mostrar más [+] Menos [-]Uptake, translocation and transformation of antimony in rice (Oryza sativa L.) seedlings
2016
Cai, Fei | Ren, Jinghua | Tao, Shu | Wang, Xilong
Antimony (Sb), as a toxic metalloid, has been gaining increasing research concerns due mainly to its severe pollution in many places. Rice has been identified to be the dominant intake route of Sb by residents close to the Sb mining areas. A hydroponic experiment was conducted to investigate the difference in uptake, translocation and transformation of Sb in rice seedlings of four cultivars exposed to 0.2 or 1.0 mg/L of Sb(V). The results showed that mass concentration of iron plaque (mg/kg FW) formed at the root surfaces of cultivar N was the highest among all tested cultivars at both low and high exposure levels of Sb(V). The accumulated Sb concentration in iron plaque significantly increased with an increase in mass concentration of iron plaque formed at the rice root. The total amount of iron plaque (mg/pot) at rice root generally increased with increasing exposed Sb(V) concentration, which was closely associated with the increasing lipid peroxidation in roots. Concentration percentage of Sb in rice root significantly reduced as the corresponding value in the iron plaque increased, suggesting that iron plaque formation strongly suppressed uptake of Sb by rice root. Sb concentration in rice tissues followed an order: root > stem, leaf. The japonica rice (cultivars N and Z) exhibited a stronger translocation tendency of Sb from root to stem than indica hybrid rice (cultivars F and G). Translocation of Sb from root of cultivar F to its stem and leaf was sharply enhanced with increasing Sb exposure concentration. Sb(V) could be reduced to Sb(III) in rice tissues, especially in stems (10–26% of the total Sb). For the sake of food safety, the difference in uptake, translocation and transformation of Sb in rice species planted in Sb-contaminated soils should be taken into consideration.
Mostrar más [+] Menos [-]Effects of enhanced bioturbation intensities on the toxicity assessment of legacy-contaminated sediments
2016
Remaili, Timothy M. | Simpson, Stuart L. | Jolley, Dianne F.
Many benthic communities within estuarine ecosystems are highly degraded due to the close proximity of urban and industrial contamination sources. The maintenance of recolonised, healthy ecosystems following remediation is a challenge, and better techniques are required for monitoring their progressive recovery. Rates of ecosystem recovery are influenced by the changes in the concentrations and forms of contaminants, the sensitivity of recolonising organisms to bioavailable contaminants, and a range of abiotic and biotic factors influencing the exposure of organisms to the contamination. Here we investigate the influence of bioturbation by an active amphipod (Victoriopisa australiensis) on the bioavailability of metals and hydrocarbons in highly contaminated sediments. Changes in contaminant bioavailability were evaluated by assessing sublethal effects to a smaller cohabiting amphipod (Melita plumulosa). For predominantly metal-contaminated sediments, the presence of V. australiensis generally increased survival and reproduction of M. plumulosa when compared to treatments with only M. plumulosa present (from 42 to 93% survival and from 3 to 61% reproduction). The decrease in toxic effects to M. plumulosa corresponded with lower dissolved copper and zinc concentrations in the overlying waters (14 to 9 μg Cu L−1, and 14 to 6 μg Zn L−1 for absence to presence of V. australiensis). For sediments contaminated with both hydrocarbons and metals, the increased bioturbation intensity by V. australiensis resulted in decreased reproduction of M. plumulosa, despite lower dissolved metal exposure, and indicated increased bioavailability of the hydrocarbon contaminants. Thus, the presence of a secondary active bioturbator can enhance or suppress toxicity to co-inhabiting organisms, and may depend on the contaminant class and form. The results highlight the need to consider both abiotic and biotic interactions when using laboratory studies to evaluate the ability of organisms to recolonise and reproduce within benthic environments degraded by contamination, or for more general extrapolation for sediment quality assessment purposes.
Mostrar más [+] Menos [-]Spatial distribution of dust–bound trace elements in Pakistan and their implications for human exposure
2016
Eqani, Syed Ali Musstjab Akber Shah | Kanwal, Ayesha | Bhowmik, Avit Kumar | Sohail, Mohammad | Riz̤vānullāh, | Ali, Syeda Maria | Alamdar, Ambreen | Ali, Nadeem | Fasola, Mauro | Shen, Heqing
This study aims to assess the spatial patterns of selected dust-borne trace elements alongside the river Indus Pakistan, their relation with anthropogenic and natural sources, and the potential risk posed to human health. The studied elements were found in descending concentrations: Mn, Zn, Pb, Cu, Ni, Cr, Co, and Cd. The Index of Geo-accumulation indicated that pollution of trace metals were higher in lower Indus plains than on mountain areas. In general, the toxic elements Cr, Mn, Co and Ni exhibited altitudinal trends (P < 0.05). The few exceptions to this trend were the higher values for all studied elements from the northern wet mountainous zone (low lying Himalaya). Spatial PCA/FA highlighted that the sources of different trace elements were zone specific, thus pointing to both geological influences and anthropogenic activities. The Hazard Index for Co and for Mn in children exceeded the value of 1 only in the riverine delta zone and in the southern low lying zone, whereas the Hazard Index for Pb was above the bench mark for both children and adults (with few exceptions) in all regions, thus indicating potential non-carcinogenic health risks. These results will contribute towards the environmental management of trace metal(s) with potential risk for human health throughout Pakistan.
Mostrar más [+] Menos [-]