Refinar búsqueda
Resultados 391-400 de 6,561
Perfluorooctane sulfonate exposure alters sexual behaviors and transcriptions of genes in hypothalamic–pituitary–gonadal–liver axis of male zebrafish (Danio rerio) Texto completo
2020
Bao, Mian | Zheng, Shukai | Liu, Caixia | Huang, Wenlong | Xiao, Jiefeng | Wu, Kusheng
Perfluorooctane sulfonate (PFOS) has been reported to be widely distributed in the environment and wildlife with persistence. PFOS has various biological toxicity, especially disturbing the endocrine system. However, few studies have systematically evaluated its effect on sexual behaviors alteration and reproduction-related genes. This study was performed to assess the effect of PFOS exposure on sexual behaviors and genes in hypothalamic–pituitary–gonadal–liver (HPGL) axis in adult zebrafish.Male adult zebrafish were exposed to PFOS (0, 2, 20, and 200 μg/L) and 5 μg/L estradiol (E₂) continuously for 21 days. Sexual behaviors were analyzed by zebrafish behavior tracking system and the mRNA levels of HPGL-related genes was detected by RT-qPCR.Body weight of the fish was increased in 2, 200 μg/L PFOS and E₂ groups, and body length was increased with exposure to 2 μg/L PFOS and E₂. The hepatic-somatic index was decreased significantly after 2 and 20 μg/L PFOS treatments. Highest PFOS (200 μg/L) and E₂ exposure impaired standard zebrafish sexual behaviors significantly such as chasing, nose-tail and tail-touching. In brains, the genes gonadotropin-releasing hormone (GnRH), gonadotropin-releasing hormone receptor (GnRHr) were down-regulated with exposure to PFOS with linear trend and E₂ exposure, and follicle-stimulating hormone and luteinizing hormone were also down-regulated with exposure to 20 and 200 μg/L PFOS. In livers, the genes vitellogenin 1 and 3 were upregulated with some concentrations of PFOS and E₂, but estrogenic receptor α, β2 were upregulated in any concentration of PFOS and E₂. In testes, the expressions of follicle-stimulating hormone receptor, luteinizing hormone receptor, and androgen receptor genes were all significantly down-regulated with any exposure concentration of PFOS and E₂.PFOS may alter the zebrafish reproductive system by disrupting endocrine activity and impairing sexual behaviors.
Mostrar más [+] Menos [-]Sulfur-modified biochar as a soil amendment to stabilize mercury pollution: An accelerated simulation of long-term aging effects Texto completo
2020
Zhao, Bin | O’Connor, David | Shen, Zhengtao | Tsang, Daniel C.W. | Rinklebe, Jörg | Hou, Deyi
The stability of mercury (Hg) contamination in soil environments can change over time. This has implications for agricultural sites under long-term management after in situ treatment involving soil amendments. In this study, rice husk biochar (RHB) and sulfur modified rice husk biochar (SRHB) were synthesized and applied (dosage = 5% dry wt.) to a Hg polluted agricultural soil collected from Guizhou province, Southern China (soil total Hg content = 28.3 mg/kg; C = 2%; and, S = 0.1%). The long-term stabilization effectiveness of the soil treatments was evaluated by a combined approach involving: (i) accelerated aging for 104 simulated years; (ii) soil extraction as a proxy for plant uptake; and, (iii) sequential extraction to identify Hg fractions. The SRHB amendment raised the soil’s total S content by approximately an order of magnitude (to 0.9%), which remained at a generally constant level throughout the simulation. The initial pH levels for the untreated and treated soils were alkaline and remained between 7.0 and 7.5 for the first 50 years of simulated aging, before decreasing as the simulation time increased further. The pH of the SRHB treated soils did not drop below that of untreated soils during the simulation. Soil extraction tests with 0.1 M HCl solution indicated that RHB and SRHB treatments could effectively immobilize the Hg in soil for at least 50 and 75 simulated years, respectively. At simulated year 50, the amount of Hg extracted from RHB and SRHB treated soils was <200 ng/L and <100 ng/L, respectively. Thus, showing SRHB to be a particularly promising remedial option. The soil Hg was mostly associated with the stable sequential extraction fractions (F3-5). By the end of the simulation, the F5 fraction for SRHB and RHB treated soils reduced by 44.6%, and 42.0%, respectively, whereas the F4 fraction increased by >400% in both cases. In summary, SRHB may provide long-lasting Hg stabilization at contaminated sites. Therefore, further research toward the development of this stabilization technology is warranted.
Mostrar más [+] Menos [-]Intergenerational effects of resuspended sediment and trace metal mixtures on life cycle traits of a pelagic copepod Texto completo
2020
Das, Shagnika | Ouddane, Baghdad | Hwang, Jiang-Shiou | Souissi, Sami
Multiple stressors like metal toxicity, organic compounds and sediment pollution from the Seine estuary are raising concern and novel toxicological approaches are needed to better assess and monitor the risk. In the present study, the copepod Eurytemora affinis from the Seine, was exposed to two different sources of contaminants, which were resuspended polluted sediments and a mixture of trace metals (dissolved phase). The exposure continued for four generations (F0, F1, F2, F3) where F0 is a generation for acclimation to the exposure condition and F3 is a generation for decontamination followed without any exposure, to detect possible maternal carryover effects of pollutants (F0 – F2) and the role of recovery (in F3). Higher accumulation of metals resulted in higher mortalities at both exposure conditions, with particularly F1 being the most sensitive generation showing highest bioaccumulation of metals, highest mortality, and smallest population size. Copper accumulation was highest of all metals in mixture from both the resuspended sediment and the combined trace metal treatment. A significantly lower naupliar production was seen in copepods exposed to resuspended sediment compared to trace metal exposed copepods. However, the decontamination phase (F3) indicated that E. affinis pre-exposed to resuspended sediment had a higher ability to recover the total population size, increase naupliar production, and depurate accumulated Cu. The population exposed to a trace metal mixture showed lower recovery and lower ability to discharge accumulated toxic metals indicating its greater effect on our experimental model when compared to resuspended sediment.
Mostrar más [+] Menos [-]Morphology-Controlled Synthesis of α–Fe2O3 Nanocrystals Impregnated on g-C3N4–SO3H with Ultrafast Charge Separation for Photoreduction of Cr (VI) Under Visible Light Texto completo
2020
Balu, Sridharan | Chen, Yi-Lun | Juang, R.-C. | Yang, Thomas C.-K. | Juan, Joon Ching
Surface functionalization and shape modifications are the key strategies being utilized to overcome the limitations of semiconductors in advanced oxidation processes (AOP). Herein, the uniform α-Fe₂O₃ nanocrystals (α-Fe₂O₃–NCs) were effectively synthesized via a simple solvothermal route. Meanwhile, the sulfonic acid functionalization (SAF) and the impregnation of α-Fe₂O₃–NCs on g-C₃N₄ (α-Fe₂O₃–NCs@CN-SAF) were achieved through complete solvent evaporation technique. The surface functionalization of the sulfonic acid group on g-C₃N₄ accelerates the faster migration of electrons to the surface owing to robust electronegativity. The incorporation of α-Fe₂O₃–NCs with CN-SAF significantly enhances the optoelectronic properties, ultrafast spatial charge separation, and rapid charge transportation. The α-Fe₂O₃-HPs@CN-SAF and α-Fe₂O₃-NPs@CN-SAF nanocomposites attained 97.41% and 93.64% of Cr (VI) photoreduction in 10 min, respectively. The photocatalytic efficiency of α-Fe₂O₃–NCs@CN-SAF nanocomposite is 2.4 and 2.1 times higher than that of pure g-C₃N₄ and α-Fe₂O₃, respectively. Besides, the XPS, PEC and recycling experiments confirm the excellent photo-induced charge separation via Z-scheme heterostructure and cyclic stability of α-Fe₂O₃–NCs@CN-SAF nanocomposites.
Mostrar más [+] Menos [-]A field study of the fate of biosolid-borne silver in the soil-crop system Texto completo
2020
Yang, Lu | Li, Simin | Wu, Longhua | Ma, Yibing | Christie, Peter | Luo, Yongming
Land application of biosolids is a major route for the introduction of silver (Ag) into the terrestrial environment. Previous studies have focused on the risks from Ag to the human food chain but there is still a lack of quantitative information on the flow of biosolid-borne Ag in the soil-crop system. Two long-term field experiments were selected to provide contrasting soil properties and tillage crops to investigate the fate of Ag from sequentially applied biosolids. Biosolid-borne Ag accumulated in the soil and < 1‰ of applied Ag was taken up by the crops. The biosolid-borne Ag also migrated down and accumulated significantly (p < 0.05) in the soil profile to a depth of 60–80 cm at an application rate of 72 t biosolids ha⁻¹. Soil texture significantly affected the downward transport of biosolid-borne Ag and the migration of Ag appeared to be more pronounced in a soil profile with a low clay content. Moreover, loss of Ag by leaching may not be related to the biosolid application rate. Leaching losses of Ag may have continued for some time after biosolid amendment was suspended. The results indicate that soil texture may be a key factor affecting the distribution of biosolid-borne Ag in the soil-crop system.
Mostrar más [+] Menos [-]Prediction and mitigation potential of anthropogenic ammonia emissions within the Beijing–Tianjin–Hebei region, China Texto completo
2020
Guo, Xiurui | Ye, Zhilan | Chen, Dongsheng | Wu, Hongkan | Shen, Yaqian | Liu, Junfang | Cheng, Shuiyuan
Large ammonia (NH₃) emissions contribute approximately 8–30% to the fine particle pollution in China and highlight the need for understanding the emission trends and mitigation effects of NH₃ in the future. The purpose of this study is to predict the NH₃ emissions and analyze the mitigation potential up to year 2040 by scenario analysis based on the established new NH₃ emission inventory from anthropogenic sources for the Beijing–Tianjin–Hebei (BTH) region. The results showed that the total NH₃ emission in the BTH region was estimated at 966.14 Gg in 2016. Under the Business-as-Usual (BAU) scenario, the total NH₃ emissions in 2030 and 2040 would increase by 13% and 26% compared with 2016 levels, with average annual growth rates of 0.9% and 1.0%, respectively. Livestock will continue to dominate NH₃ emissions in the future, with the proportions of total emissions increasing from 57% in 2016 to 64% in 2030 and 68% in 2040. The share of the second-largest NH₃ emission source, synthetic fertilizer application, will decrease from 36% in 2016 to 31% in 2030 and 27% in 2040. Among five other sources, the largest change occurred in waste disposal, increasing notably by 3.31 times from 2016 to 2040 owing to rapid urbanization. Under the Combined Options (CO) scenario, the total NH₃ emissions could be reduced by as much as 34% by 2030 and 50% by 2040 compared with the BAU scenario, which is attributed to livestock (24% in 2030, 37% in 2040) and synthetic fertilizer application (10% in 2030, 13% in 2040), respectively. This study can give a reliable estimation of anthropogenic NH₃ emission in the BTH region during 2020–2040 and provide a valuable reference for effective mitigation measures and control strategies for policy makers.
Mostrar más [+] Menos [-]Importance of the structure and micropores of sedimentary organic matter in the sorption of phenanthrene and nonylphenol Texto completo
2020
Xu, Decheng | Hu, Shujie | Xiong, Yongqiang | Yang, Yu | Ran, Yong
The demineralized fraction (DM), lipid-free fraction (LF), nonhydrolyzable organic carbon fraction (NHC), and black carbon (BC) were isolated from five marine surface sediments, and they were characterized by elemental analysis as well as CO₂ and N₂ adsorption techniques, respectively. The NHC fractions were characterized using advanced solid-state ¹³C nuclear magnetic resonance (NMR) and x-ray photoelectron spectroscopy (XPS). Then, the sorption isotherms of phenanthrene (Phen) and nonylphenol (NP) on all of the samples were investigated by a batch technique. The CO₂ micropore volumes were corrected for the outer specific surface areas (SSAs) by using the N₂-SSA. Significant correlations between the micropore-filling volumes of Phen and NP and the micropore volumes suggested that the micropore-filling mechanism dominated the Phen and NP sorption. Meanwhile, the (O + N)/C atomic ratios were negatively and significantly correlated with the sorption capacities of Phen and NP, indicating that the sedimentary organic matter (SOM) polarity also played a significant role in the sorption process. In addition, a strong linear correlation was demonstrated between the aromatic C and the sorption capacity of Phen for the NHC fractions. This study demonstrates the importance of the micropores, polarity, and aromaticity on the sorption processes of Phen and NP in the sediments.
Mostrar más [+] Menos [-]Integrated environmental vulnerability to oil spills in sensitive areas Texto completo
2020
Monteiro, Caroline Barbosa | Oleinik, Phelype Haron | Leal, Thalita Fagundes | Marques, Wiliam Correa | Nicolodi, João Luiz | Lopes, Bruna de Carvalho Faria Lima
As the typical range of influence of oil spills surrounds urbanised and economically active areas, it is likely that fragile regions may not be part of the most vulnerable zones. This premise is remediated in this paper with the adoption of a vulnerability approach based on the integration of static and dynamic information, such as oil pollution susceptibility. Susceptibility is a poorly consolidated term and is often used as synonym for environmental sensitivity; it is considered here to be the distribution areas of oil slicks. To test the proposed approach, an integrated estimation of environmental vulnerability is carried out for an environmentally sensitive area in the south of Brazil by merging static data inherent to the medium with information of a dynamic nature related to trajectory, behaviour and the fate of oil at sea. Moreover, the oil pollution intensity and environmental sensitivity data in susceptible areas are addressed. Subsequently, the environmental vulnerability is estimated by integrating hazard maps, concentrations and losses of the mass of the oil slick, oil beaching time and the littoral sensitivity index hierarchy. Results will prove to be useful to highlight critical areas for which the highest levels of severity are expected, which can lead to improvements in decision-making processes to support oil-spill prevention, as well as improve response readiness, especially in developing countries that have historically under-protected their sensitive regions.
Mostrar más [+] Menos [-]Maternal Bisphenol S exposure affects the reproductive capacity of F1 and F2 offspring in mice Texto completo
2020
Zhang, Ming-Yu | Tian, Yu | Yan, Zi-Hui | Li, Wei Dong | Zang, Chuan-Jie | Li, Lan | Sun, Xiao-Feng | Shen, Wei | Cheng, Shun-Feng
Bisphenol S (BPS) is an endocrine disruptor which is widely used in commercial plastic products. Previous studies have shown that exposure to BPS has toxic effects on various aspects of mammalian, but there are few reports about reproductive toxicity. In order to investigate the effects of maternal BPS exposure on the reproductive of F1 and F2 female mice, the pregnant mice were orally administered with different dosages of BPS only once every day from 12.5 to 15.5 days post-coitus (dpc). The results showed that maternal BPS exposure to 2 μg per kg of body weight per day (2 μg/kg) and 10 μg/kg accelerated the meiotic prophase I (MPI) of F1 female mice and the expression of the genes related to meiotic were increased. Further studies showed that maternal BPS exposure resulted in a significant increase in the percentage of oocytes enclosed in primordial follicles in the 3 days post-partum (3 dpp) ovaries of F1 female mice. And at the time of 21 days post-partum (21 dpp) in F1 female mice, the number of antral follicles were significantly lower compare to controls. In the study of five-week female mice of F1, we found that BPS disturbed the folliculogenesis, and the maturation rates and fertilization rates of oocytes were significantly decreased. Of note, maternal BPS exposure disrupted H3K4 and H3K9 tri-methylation levels in F1 ovaries. Maternal BPS exposure only affected the cyst breakdown in F2 female mice. Taken together, our results suggest that, maternal BPS exposure impaired the process of meiosis and oogenesis of F1 and F2 offspring, resulting in abnormal follicular development and serious damage to the reproduction.
Mostrar más [+] Menos [-]Formation of non-extractable residues as a potentially dominant process in the fate of PAHs in soil: Insights from a combined field and modeling study on the eastern Tibetan Plateau Texto completo
2020
Ding, Yang | Li, Li | Wania, Frank | Zhang, Yuan | Huang, Huanfang | Liao, Ting | Liu, Jinhong | Qi, Shihua
Whereas non-extractable residue (NER) formation is recognized as an important process affecting the ecological risk of organic contaminants in soils, it is commonly neglected in regional-scale multi-media models assessing chemical environmental fate and risk. We used a combined field and modeling study to elucidate the relative importance of NER formation to the reduction in available organic contaminants compared with fate processes commonly considered in risk assessment models (volatilization, leaching, and biodegradation). Specifically, four polycyclic aromatic hydrocarbons (PAHs), i.e., phenanthrene (Phe), pyrene (Pyr), benzo[a]pyrene (BaP), and benzo[ghi]perylene (BghiP), were spiked and measured in a one-year field pot experiment at four sites with diverse environmental conditions on the eastern Tibetan Plateau. The rate of NER formation was derived as the difference between the overall rate of decline in total-extractable PAH concentrations, obtained by fitting a biphasic first-order model to the measured concentrations, and the sum of the calculated rates of volatilization, leaching, and biodegradation. Our work shows that the total-extractable PAH concentration undergoes a rapid decline and a slow decline, with shorter overall half-lives (especially for BaP and BghiP) than those observed in earlier studies. Generally, NER formation was assessed to be the dominant contributor (64 ± 33%) to the overall decline of PAHs, followed by biodegradation (35 ± 32%); volatilization and leaching were the smallest contributors. In particular, heavier PAHs (i.e. BaP and BghiP) tend to have shorter half-lives in the rapid and the overall decline phase, indicating that the erroneous estimation of environmental fate and risks might be more pronounced for organic contaminants with a large molecular size. The trend of overall decline rates of PAHs displayed a combined effect of NER formation and biodegradation. This work indicates the need to consider NER formation as a process in multi-media models of chemical fate and risk.
Mostrar más [+] Menos [-]