Refinar búsqueda
Resultados 401-410 de 7,351
Binding, recovery, and infectiousness of enveloped and non-enveloped viruses associated with plastic pollution in surface water Texto completo
2022
Moresco, Vanessa | Charatzidou, Anna | Oliver, David M. | Weidmann, Manfred | Matallana-Surget, Sabine | Quilliam, Richard S.
Binding, recovery, and infectiousness of enveloped and non-enveloped viruses associated with plastic pollution in surface water Texto completo
2022
Moresco, Vanessa | Charatzidou, Anna | Oliver, David M. | Weidmann, Manfred | Matallana-Surget, Sabine | Quilliam, Richard S.
Microplastics in wastewater and surface water rapidly become colonised by microbial biofilm. Such ‘plastisphere’ communities are hypothesised to persist longer and be disseminated further in the environment and may act as a vector for human pathogens, particularly as microplastics entering wastewater treatment plants are exposed to high concentrations of pathogenic bacteria. However, the potential for human viral pathogens to become associated with the plastisphere has never before been quantified. Here, we have used rotavirus (RV) SA11 (a non-enveloped enteric virus) and the enveloped bacteriophage Phi6 as model viruses to quantify binding and recovery from biofilm-colonised microplastic pellets in three different water treatments (filtered and non-filtered surface water, and surface water with added nutrients). Viruses associated with biofilm-colonised pellets were more stable compared to those remaining in the water. While infectious particles and genome copies of RV remained stable over the 48 h sampling period, Phi6 stability was highly impacted, with a reduction ranging from 2.18 to 3.94 log₁₀. Virus particles were protected against inactivation factors when associated with the biofilm on microplastic surfaces, and when there was a high concentration of particulate matter in the liquid phase. Although our results suggest that the presence of an envelope may limit virus interaction with the plastisphere, the ability to recover both enveloped and non-enveloped infectious viruses from colonised microplastic pellets highlights an additional potential public health risk of surface waters becoming contaminated with microplastics, and subsequent human exposure to microplastics in the environment.
Mostrar más [+] Menos [-]Binding, recovery, and infectiousness of enveloped and non-enveloped viruses associated with plastic pollution in surface water Texto completo
2022
Moresco, Vanessa | Charatzidou, Anna | Oliver, David M | Weidmann, Manfred | Matallana-Surget, Sabine | Quilliam, Richard S | NERC Natural Environment Research Council | NERC Natural Environment Research Council | Biological and Environmental Sciences | Biological and Environmental Sciences | Biological and Environmental Sciences | Brandenburg Medical School Theodor-Fontane | Biological and Environmental Sciences | Biological and Environmental Sciences | 0000-0002-8699-8179 | 0000-0002-6200-562X | 0000-0002-7063-7491 | 0000-0002-6023-3215 | 0000-0001-7020-4410
Microplastics in wastewater and surface water rapidly become colonised by microbial biofilm. Such ‘plastisphere’ communities are hypothesised to persist longer and be disseminated further in the environment and may act as a vector for human pathogens, particularly as microplastics entering wastewater treatment plants are exposed to high concentrations of pathogenic bacteria. The potential for human viral pathogens to become associated with the plastisphere has never before been quantified. Here, we have used rotavirus (RV) SA11 (a non-enveloped enteric virus) and the enveloped bacteriophage Phi6 as model viruses to quantify binding and recovery from biofilm-colonised microplastic pellets in three different water treatments (filtered and non-filtered surface water, and surface water with added nutrients). Viruses associated with biofilm-colonised pellets were more stable compared to those remaining in the water. While detection of infectious particles and genome copies of RV remained stable over the 48 h sampling period, Phi6 stability was highly impacted, with reduction values ranging from 2.18 to 3.94 log10. Virus particles were protected against inactivation factors when associated with the biofilm colonising microplastic surfaces, and when there was a high concentration of particulate matter in the liquid phase. Although our results suggest that the presence of an envelope may impair virus interaction with the plastisphere, the ability to recover both enveloped and non-enveloped infectious viruses from colonised microplastic pellets highlights an additional potential public health risk of surface waters becoming contaminated with microplastics, and subsequent human exposure to microplastics in the environment.
Mostrar más [+] Menos [-]Organ-specific accumulation of cadmium and zinc in Gammarus fossarum exposed to environmentally relevant metal concentrations Texto completo
2022
Gestin, Ophélia | Lopes, Christelle | Delorme, Nicolas | Garnero, Laura | Geffard, Olivier | Lacoue-Labarthe, Thomas
Organ-specific accumulation of cadmium and zinc in Gammarus fossarum exposed to environmentally relevant metal concentrations Texto completo
2022
Gestin, Ophélia | Lopes, Christelle | Delorme, Nicolas | Garnero, Laura | Geffard, Olivier | Lacoue-Labarthe, Thomas
One of the best approaches for improving the assessment of metal toxicity in aquatic organisms is to study their organotropism (i.e., the distribution of metals among organs) through a dynamical approach (i.e., via kinetic experiments of metal bioaccumulation), to identify the tissues/organs that play a key role in metal regulation (e.g., storage or excretion). This study aims at comparing the organ-specific metal accumulation of a non-essential (Cd) and an essential metal (Zn), at their environmentally relevant exposure concentrations, in the gammarid Gammarus fossarum. Gammarids were exposed for 7 days to ¹⁰⁹Cd- or ⁶⁵Zn-radiolabeled water at a concentration of 52.1 and 416 ng.L⁻¹ (stable equivalent), respectively, and then placed in clean water for 21 days. At different time intervals, the target organs (i.e., caeca, cephalons, intestines, gills, and remaining tissues) were collected and ¹⁰⁹Cd or ⁶⁵Zn contents were quantified by gamma-spectrometry. A one-compartment toxicokinetic (TK) model was fitted by Bayesian inference to each organ/metal dataset in order to establish TK parameters. Our results indicate: i) a contrasting distribution pattern of concentrations at the end of the accumulation phase (7ᵗʰ day): gills > caeca ≈ intestines > cephalons > remaining tissues for Cd and intestines > caeca > gills > cephalons > remaining tissues for Zn; ii) a slower elimination of Cd than of Zn by all organs, especially in the gills in which the Cd concentration remained constant during the 21-day depuration phase, whereas Zn concentrations decreased sharply in all organs after 24 h in the depuration phase; iii) a major role of intestines in the uptake of waterborne Cd and Zn at environmentally relevant concentrations.
Mostrar más [+] Menos [-]Organ-specific accumulation of cadmium and zinc in Gammarus fossarum exposed to environmentally relevant metal concentrations Texto completo
2022
Gestin, Ophélia | Lopes, Christelle | Delorme, Nicolas | Garnero, Laura | Geffard, Olivier | Lacoue-Labarthe, Thomas | Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS) | LIttoral ENvironnement et Sociétés (LIENSs) ; Institut national des sciences de l'Univers (INSU - CNRS)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS) | RiverLy - Fonctionnement des hydrosystèmes (RiverLy) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | ANR-18-CE34-0013,APPROve,Démarche intégrée pour proposer la protéomique dans la surveillance : accumulation, devenir et multimarqueurs(2018)
International audience | One of the best approaches for improving the assessment of metal toxicity in aquatic organisms is to study their organotropism (i.e., the distribution of metals among organs) through a dynamical approach (i.e., via kinetic experiments of metal bioaccumulation), to identify the tissues/organs that play a key role in metal regulation (e.g., storage or excretion). This study aims at comparing the organ-specific metal accumulation of a non-essential (Cd) and an essential metal (Zn), at their environmentally relevant exposure concentrations, in the gammarid Gammarus fossarum. Gammarids were exposed for 7 days to 109 Cd-or 65 Znradiolabeled water at a concentration of 52.1 and 416 ng.L-1 (stable equivalent), respectively, and then placed in clean water for 21 days. At different time intervals, the target organs (i.e., caeca, cephalons, intestines, gills, and remaining tissues) were collected and 109 Cd or 65 Zn contents were quantified by gamma-spectrometry. A one-compartment toxicokinetic (TK) model was fitted by Bayesian inference to each organ/metal dataset in order to establish TK parameters. Our results indicate: i) a contrasting distribution pattern of concentrations at the end of the accumulation phase (7 th day): gills > caeca ≈ intestines > cephalons > remaining tissues for Cd and intestines > caeca > gills > cephalons > remaining tissues for Zn; ii) a slower elimination of Cd than of Zn by all organs, especially in the gills in which the Cd concentration remained constant during the 21-day depuration phase, whereas Zn concentrations decreased sharply in all organs after 24 h in the depuration phase; iii) a major role of intestines in the uptake of waterborne Cd and Zn at environmentally relevant concentrations.
Mostrar más [+] Menos [-]Metal bioavailable contamination engages richness decline, species turnover but unchanged functional diversity of stream macroinvertebrates at the scale of a French region Texto completo
2022
Alric, Benjamin | Geffard, Olivier | Chaumot, Arnaud
Metal bioavailable contamination engages richness decline, species turnover but unchanged functional diversity of stream macroinvertebrates at the scale of a French region Texto completo
2022
Alric, Benjamin | Geffard, Olivier | Chaumot, Arnaud
Freshwater ecosystems are the main source of water for sustaining life on earth, and the biodiversity they support is the main source of valuable goods and services for human populations. Despite growing recognition of the impairment of freshwater ecosystems by micropollutant contamination, different conceptual and methodological considerations can newly be addressed to improve our understanding of the ecological impact into these ecosystems. Here, we originally combined in situ ecotoxicology and community ecology concepts to unveil the mechanisms structuring macroinvertebrate communities along a regional contamination gradient. The novelty of our study lies in the use of an innovative biomonitoring approach (measurement of metal contents in caged crustaceans) allowing to quantify and compare on a regional scale the levels of bioavailable metal contamination to which stream communities are exposed. We were hence able to identify 23 streams presenting a significant gradient of bioavailable metal contamination within the same catchment area in the South West of France, from which we also obtained data on the composition of resident macroinvertebrate communities. Analyses of structural and functional integrity of communities revealed an unexpected decoupling between taxonomic and functional diversity of communities in response to bioavailable metal contamination. We show that despite the negative impact of bioavailable metal contamination exposure on taxonomic diversity (with an average species loss of 17% in contaminated streams), functional diversity is maintained through a process of non-random species replacement by functional redundant species at the regional scale. Such unanticipated findings call for a deeper characterization of metal-tolerant communities’ ability to cope with environmental variability in multi-stressed ecosystems.
Mostrar más [+] Menos [-]Metal bioavailable contamination engages richness decline, species turnover but unchanged functional diversity of stream macroinvertebrates at the scale of a French region Texto completo
2022
Alric, Benjamin | Geffard, Olivier | Chaumot, Arnaud | Adaptation et diversité en milieu marin (ADMM) ; Centre National de la Recherche Scientifique (CNRS)-Station biologique de Roscoff = Roscoff Marine Station (SBR) ; Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS) | RiverLy - Fonctionnement des hydrosystèmes (RiverLy) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
International audience | Freshwater ecosystems are the main source of water for sustaining life on earth, and the biodiversity they support is the main source of valuable goods and services for human populations. Despite growing recognition of the impairment of freshwater ecosystems by micropollutant contamination, different conceptual and methodological considerations can newly be addressed to improve our understanding of the ecological impact into these ecosystems. Here, we originally combined in situ ecotoxicology and community ecology concepts to unveil the mechanisms structuring macroinvertebrate communities along a regional contamination gradient. The novelty of our study lies in the use of an innovative biomonitoring approach (measurement of metal contents in caged crustaceans) allowing to quantify and compare on a regional scale the levels of bioavailable metal contamination to which stream communities are exposed. We were hence able to identify 23 streams presenting a significant gradient of bioavailable metal contamination within the same catchment area in the South West of France, from which we also obtained data on the composition of resident macroinvertebrate communities. Analyses of structural and functional integrity of communities revealed an unexpected decoupling between taxonomic and functional diversity of communities in response to bioavailable metal contamination. We show that despite the negative impact of bioavailable metal contamination exposure on taxonomic diversity (with an average species loss of 17% in contaminated streams), functional diversity is maintained through a process of non-random species replacement by functional redundant species at the regional scale. Such unanticipated findings call for a deeper characterization of metal-tolerant communities' ability to cope with environmental variability in multistressed ecosystems.
Mostrar más [+] Menos [-]Thallium distribution in an estuary affected by acid mine drainage (AMD): The Ría de Huelva estuary (SW Spain) Texto completo
2022
Cánovas, Carlos Ruiz | Basallote, María Dolores | Macías, Francisco | Freydier, Rémi | Parviainen, Annika | Pérez López, Rafael
Thallium distribution in an estuary affected by acid mine drainage (AMD): The Ría de Huelva estuary (SW Spain) Texto completo
2022
Cánovas, Carlos Ruiz | Basallote, María Dolores | Macías, Francisco | Freydier, Rémi | Parviainen, Annika | Pérez López, Rafael
This study investigates the behavior of Tl in the Ría de Huelva (SW Spain), one of the most metal polluted estuaries in the world. Dissolved Tl concentration displayed a general decrease across the estuary during the dry season (DS); from 5.0 to 0.34 μg/L in the Tinto and Odiel estuaries, respectively, to 0.02 μg/L in the channel where the rivers join. A slighter decrease was observed during the wet season (WS) (from 0.72 to 0.14 μg/L to 0.02 μg/L) due to the dilution effect of rainfalls in the watersheds. These values are 3 orders of magnitude higher than those reported in other estuaries worldwide. Different increases in Tl concentrations with salinity were observed in the upper reaches of the Tinto and Odiel estuaries, attributed to desorption processes from particulate matter. Chemical and mineralogical evidences of particulate matter, point at Fe minerals (i.e., jarosite) as main drivers of Tl particulate transport in the estuary. Unlike other estuaries worldwide, where a fast sorption process onto particulate matter commonly takes place, Tl is mainly desorbed from particulate matter in the Tinto and Odiel estuaries. Thus, Tl may be released back from jarositic particulate matter across the salinity gradient due to the increasing proportion of unreactive TlCl⁰ and K⁺ ions, which compete for adsorption sites with Tl⁺ at increasing salinities. A mixing model based on conservative elements revealed a 6-fold increase in Tl concentrations related to desorption processes. However, mining spills like that occurred in May 2017 may contribute to enhance dissolved and particulate Tl concentrations in the estuary as well as to magnify these desorption processes (up to around 1100% of Tl release), highlighting the impact of the mine spill on the remobilization of Tl from the suspended matter to the water column.
Mostrar más [+] Menos [-]Thallium distribution in an estuary affected by acid mine drainage (AMD): The Ría de Huelva estuary (SW Spain) Texto completo
2022
Ruiz Cánovas, Carlos | Basallote, María Dolores | Macías, Francisco | Freydier, Rémi | Parviainen, Annika Jenni Johana | Pérez López, Rafael
Supplementary data to this article can be found online at https://doi. org/10.1016/j.envpol.2022.119448. | This work was supported by the Spanish Ministry of Economy and Competitiveness under the research projects CAPOTE (MINECO; CGL 2017-86050-R) and TRAMPA (MINECO; PID 2020-119196RB-C21). C.R C´anovas thanks the Spanish Ministry of Science and Innovation for the Postdoctoral Fellowship granted under application reference RYC 2019- 027949-I. M.D. Basallote thanks the Spanish Ministry of Science and Innovation for the Postdoctoral Fellowship granted under application reference IJC 2018-035056-I. A. Parviainen thanks the Spanish Ministry of Science and Innovation for the Postdoctoral Fellowship granted under application reference IJCI-2016-27412. The comments and helpful criticisms of three anonymous reviewers and the support of Professor Wen-Xiong Wang (Editor) have considerably improved the original manuscript and are also gratefully acknowledged. Funding for open access charge: Universidad de Huelva/CBUA. | This study investigates the behavior of Tl in the Ría de Huelva (SW Spain), one of the most metal polluted estuaries in the world. Dissolved Tl concentration displayed a general decrease across the estuary during the dry season (DS); from 5.0 to 0.34 μg/L in the Tinto and Odiel estuaries, respectively, to 0.02 μg/L in the channel where the rivers join. A slighter decrease was observed during the wet season (WS) (from 0.72 to 0.14 μg/L to 0.02 μg/L) due to the dilution effect of rainfalls in the watersheds. These values are 3 orders of magnitude higher than those reported in other estuaries worldwide. Different increases in Tl concentrations with salinity were observed in the upper reaches of the Tinto and Odiel estuaries, attributed to desorption processes from particulate matter. Chemical and mineralogical evidences of particulate matter, point at Fe minerals (i.e., jarosite) as main drivers of Tl particulate transport in the estuary. Unlike other estuaries worldwide, where a fast sorption process onto particulate matter commonly takes place, Tl is mainly desorbed from particulate matter in the Tinto and Odiel estuaries. Thus, Tl may be released back from jarositic particulate matter across the salinity gradient due to the increasing proportion of unreactive TlCl0 and K+ ions, which compete for adsorption sites with Tl+ at increasing salinities. A mixing model based on conservative elements revealed a 6-fold increase in Tl concentrations related to desorption processes. However, mining spills like that occurred in May 2017 may contribute to enhance dissolved and particulate Tl concentrations in the estuary as well as to magnify these desorption processes (up to around 1100% of Tl release), highlighting the impact of the mine spill on the remobilization of Tl from the suspended matter to the water column. | CAPOTE (MINECO; CGL 2017-86050-R) | TRAMPA (MINECO; PID 2020-119196RB-C21) | Spanish Ministry of Science and Innovation for the Postdoctoral Fellowship granted under application reference RYC 2019- 027949-I. | Postdoctoral Fellowship granted under application reference IJCI-2016-27412 | Funding for open access charge: Universidad de Huelva/CBUA
Mostrar más [+] Menos [-]Time-series incubations in a coastal environment illuminates the importance of early colonizers and the complexity of bacterial biofilm dynamics on marine plastics Texto completo
2022
Lemonnier, C. | Chalopin, M. | Huvet, A. | Le Roux, F. | Labreuche, Y. | Petton, B. | Maignien, L. | Paul-Pont, I. | Reveillaud, J.
Time-series incubations in a coastal environment illuminates the importance of early colonizers and the complexity of bacterial biofilm dynamics on marine plastics Texto completo
2022
Lemonnier, C. | Chalopin, M. | Huvet, A. | Le Roux, F. | Labreuche, Y. | Petton, B. | Maignien, L. | Paul-Pont, I. | Reveillaud, J.
The problematic of microplastics pollution in the marine environment is tightly linked to their colonization by a wide diversity of microorganisms, the so-called plastisphere. The composition of the plastisphere relies on a complex combination of multiple factors including the surrounding environment, the time of incubation along with the polymer type, making it difficult to understand how the biofilm evolves during the microplastic lifetime over the oceans. To better define bacterial community assembly processes on plastics, we performed a 5 months spatio-temporal survey of the plastisphere in an oyster farming area in the Bay of Brest (France). We deployed three types of plastic pellets in two positions in the foreshore and in the water column. Plastic-associated biofilm composition in all these conditions was monitored using 16 S rRNA metabarcoding and compared to free-living and attached bacterial members of seawater. We observed that bacterial families associated to plastic pellets were significantly distinct from the ones found in seawater, with a significant prevalence of filamentous Cyanobacteria on plastics. No convergence towards a unique plastisphere was detected between polymers exposed in the intertidal and subtidal area, emphasizing the central role of the surrounding environment on constantly shaping the plastisphere community diversity. However, we could define a bulk of early-colonizers of marine biofilms such as Alteromonas, Pseudoalteromonas or Vibrio. These early-colonizers could reach high abundances in floating microplastics collected in field-sampling studies, suggesting the plastic-associated biofilms could remain at early development stages across large oceanic scales. Our study raises the hypothesis that most members of the plastisphere, including putative pathogens, could result of opportunistic colonization processes and unlikely long-term transport.
Mostrar más [+] Menos [-]Time-series incubations in a coastal environment illuminates the importance of early colonizers and the complexity of bacterial biofilm dynamics on marine plastics Texto completo
2022
Lemonnier, C. | Chalopin, Morgane | Huvet, Arnaud | Le Roux, Frederique | Labreuche, Yannick | Petton, Bruno | Maignien, Lois | Paul-pont, Ika | Reveillaud, J.
The problematic of microplastics pollution in the marine environment is tightly linked to their colonization by a wide diversity of microorganisms, the so-called plastisphere. The composition of the plastisphere relies on a complex combination of multiple factors including the surrounding environment, the time of incubation along with the polymer type, making it difficult to understand how the biofilm evolves during the microplastic lifetime over the oceans. To better define bacterial community assembly processes on plastics, we performed a 5 months spatio-temporal survey of the plastisphere in an oyster farming area in the Bay of Brest (France). We deployed three types of plastic pellets in two positions in the foreshore and in the water column. Plastic-associated biofilm composition in all these conditions was monitored using 16 S rRNA metabarcoding and compared to free-living and attached bacterial members of seawater. We observed that bacterial families associated to plastic pellets were significantly distinct from the ones found in seawater, with a significant prevalence of filamentous Cyanobacteria on plastics. No convergence towards a unique plastisphere was detected between polymers exposed in the intertidal and subtidal area, emphasizing the central role of the surrounding environment on constantly shaping the plastisphere community diversity. However, we could define a bulk of early-colonizers of marine biofilms such as Alteromonas, Pseudoalteromonas or Vibrio. These early-colonizers could reach high abundances in floating microplastics collected in field-sampling studies, suggesting the plastic-associated biofilms could remain at early development stages across large oceanic scales. Our study raises the hypothesis that most members of the plastisphere, including putative pathogens, could result of opportunistic colonization processes and unlikely long-term transport.
Mostrar más [+] Menos [-]Influence of edaphic conditions and persistent organic pollutants on earthworms in an infiltration basin Texto completo
2022
Fernandes, G. | Roques, O. | Lassabatère, L. | Sarles, L. | Venisseau, A. | Marchand, P. | Bedell, J.-P.
Influence of edaphic conditions and persistent organic pollutants on earthworms in an infiltration basin Texto completo
2022
Fernandes, G. | Roques, O. | Lassabatère, L. | Sarles, L. | Venisseau, A. | Marchand, P. | Bedell, J.-P.
In recent decades, stormwater management has developed to allow stormwater to infiltrate directly into the soils instead of being collected and routed to sewer systems. However, during infiltration, stormwater creates a sediment deposit at the soil surface as the result of high loads of suspended particles (including pollutants), leading to the settlement of sedimentary layers prone to colonization by plants and earthworms. This study aims to investigate the earthworm communities of a peculiar infiltration basin and investigate the influence of edaphic conditions (water content, organic matter content, pH, height of sediment) and of persistent organic pollutants (POPs: PCBs, PCDDs and PCDFs) on these earthworms. Attention was paid to their age (juveniles or adults) and their functional group (epigeic, endogeic, anecic). We found that the earthworm abundance was mostly driven by edaphic conditions, with only a slight impact of POPs, with a significant negative impact of PCBDLno for juveniles and endogeic, and PCDDs for epigeic. On the contrary, the height of the sediment and the water content are beneficial for their presence and reproduction. Furthermore, POPs contents are also linked to physicochemical parameters of the sediment. Bioaccumulation was clearly revealed in the studied site but does not differ between juveniles and adults, except for PCDDs. Conversely, BAF values seemed to vary between functional groups, except for PCBDL non-ortho. It strongly varies with the family types (PCBs versus PCCD/Fs) and between congeners within the same family, with specific strong bioaccumulation for a few congeners.
Mostrar más [+] Menos [-]Influence of edaphic conditions and persistent organic pollutants on earthworms in an infiltration basin Texto completo
2022
Fernandes, G. | Roques, O. | Lassabatère, L. | Sarles, L. | Venisseau, A. | Marchand, P. | Bedell, Jean-Philippe | LEHNA - Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés [équipe IAPHY] (LEHNA IAPHY) ; Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire d'étude des Résidus et Contaminants dans les Aliments (LABERCA) ; École nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
International audience | In recent decades, stormwater management has developed to allow stormwater to infiltrate directly into the soils instead of being collected and routed to sewer systems. However, during infiltration, stormwater creates a sediment deposit at the soil surface as the result of high loads of suspended particles (including pollutants), leading to the settlement of sedimentary layers prone to colonization by plants and earthworms. This study aims to investigate the earthworm communities of a peculiar infiltration basin and investigate the influence of edaphic conditions (water content, organic matter content, pH, height of sediment) and of persistent organic pollutants (POPs: PCBs, PCDDs and PCDFs) on these earthworms. Attention was paid to their age (juveniles or adults) and their functional group (epigeic, endogeic, anecic). We found that the earthworm abundance was mostly driven by edaphic conditions, with only a slight impact of POPs, with a significant negative impact of PCBDLno for juveniles and endogeic, and PCDDs for epigeic. On the contrary, the height of the sediment and the water content are beneficial for their presence and reproduction. Furthermore, POPs contents are also linked to physicochemical parameters of the sediment. Bioaccumulation was clearly revealed in the studied site but does not differ between juveniles and adults, except for PCDDs. Conversely, BAF values seemed to vary between functional groups, except for PCBDL non-ortho. It strongly varies with the family types (PCBs versus PCCD/Fs) and between congeners within the same family, with specific strong bioaccumulation for a few congeners.
Mostrar más [+] Menos [-]Metal(loid) flux change in Dongting Lake due to the operation of Three Gorges Dam, China Texto completo
2022
Tang, Wenzhong | Shu, Limin | Ng, J. (Jack) | Bai, Yaohui | Zhao, Yu | Lin, Hui | Zhang, Hong
A drastic decrease in the suspended sediment of Dongting Lake (DTL) has been observed due to Three Gorges Dam (TGD) impoundment operation since 2003. However, the relationship between sediment loads and metal fluxes has not been studied. This study comprehensively analyzed the content characteristics of seven metal(loid)s (As, Cd, Cr, Cu, Hg, Pb, and Zn) in the surface sediment of DTL from 2000 to 2019. The period of 2005–2009 corresponded to a metal(loid) enrichment stage in the sediment of DTL. The metal(loid) cumulative input of DTL from 2000 to 2019 reached 153 × 10³ t, and the increasing rate was gradually diminished because of TGD operation, while the metal(loid) cumulative output reached 132 × 10³ t. Undergoing an input-output state transition, the metal(loid) cumulative deposition of DTL in 2019 was only 42% of its peak in 2007. Especially, the metal(loid) fluxes of DTL all became negative for the first time in 2006. It is worth noting that Cd in DTL has shifted to a net export during the study period. Finally, the assessment results of pollution, risk, and toxicity indicated that metal(loid) effects on sediment quality were weakening in recent years. This study confirmed that DTL has shifted from metal(loid) deposition to export, providing new information for future DTL management options.
Mostrar más [+] Menos [-]Source and distribution characteristics of 239, 240, 241Pu, 237Np and 134, 137Cs in sediments in the Northwest and Central Equatorial Pacific after the Fukushima nuclear accident Texto completo
2022
Wang, Fenfen | Zheng, Jian | Aono, Tatsuo | Pan, Shaoming | Men, Wu
To understand the possible influence of the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident on the deep sea, as well as the geochemical behavior and transport of radionuclides, ¹³⁴Cs, ¹³⁷Cs, ²³⁹, ²⁴⁰Pu, ²⁴¹Pu, and ²³⁷Np were measured in the abyssal sediments of the Northwest Pacific (NWP) and Central Equatorial Pacific (CEP) Ocean. Data on the characteristics of these sediments obtained after the FDNPP accident are extremely rare, especially in the NWP subtropical gyre (NPSG) region. FDNPP-derived radio-Cs (¹³⁴Cs, ¹³⁷Cs) arrived at the open sea floor of the NWP before 2018 but was only found in the Kuroshio-Oyashio Extension (KOE) region. No FDNPP-derived Pu was detected in the abyssal sediments of the NWP or CEP. Pu in the NWP mainly originated from global fallout and the Pacific Proving Ground (PPG) close-in fallout, except for at station WP1 (39°N in the KOE region), where an abnormal but non-FDNPP-derived Pu signal was detected. Pu in the eastern CEP sediment was less affected by the PPG close-in fallout from the Marshall Islands and was mainly derived from global fallout, with some close-in fallout from the Johnston Atoll test. The KOE region was the area most affected by PPG close-in fallout Pu via Kuroshio transport, while the lowest inventories of ²³⁹⁺²⁴⁰Pu and ²³⁷Np were found in the NPSG region due to its oligotrophic environment. The ²³⁷Np originated from the same source as Pu, and the latitudinal pattern of ²³⁷Np was consistent with that of Pu. Station SS (in the marginal sea of the NWP) contained high ²³⁷Np/²³⁹Pu atom ratios in the deeper layers of sediment and had a ²³⁷Np depth profile opposite that of the ²³⁹⁺²⁴⁰Pu profile, compared to other stations; these differences are mainly attributed to differences in the behaviors of ²³⁷Np and ²³⁹Pu.
Mostrar más [+] Menos [-]Reconstructing atmospheric Hg levels near the oldest chemical factory in central Europe using a tree ring archive Texto completo
2022
Nováková, Tereza | Navratil, Tomas | Schütze, Martin | Rohovec, Jan | Matoušková, Šárka | Hošek, Michal | Matys Grygar, Tomáš
The Chemical Factory in Marktredwitz (CFM) is known as the oldest chemical factory in Germany (1778–1985), and from the beginning of the 20ᵗʰ century focused primarily on the production of mercury (Hg) compounds. Due to extensive pollution, together with employee health issues, the CFM was shut in 1985 by a government order and remediation works proceeded from 1986 to 1993. In this study, tree ring archives of European Larch (Larix decidua Mill.) were used to reconstruct changes of air Hg levels near the CFM. Mercury concentrations in larch boles decreased from 80.6 μg kg⁻¹ at a distance of 0.34 km–3.4 μg kg⁻¹ at a distance of 16 km. The temporal trend of atmospheric Hg emissions from the CFM reconstructed from the tree ring archives showed two main peaks. The first was in the 1920s, with a maximum tree ring Hg concentration 249.1 ± 43.9 μg kg⁻¹ coinciding with when the factory had a worldwide monopoly on the production of Hg-based seed dressing fungicide. The second peak in the 1970s, with a maximum tree ring Hg concentration of 116.4 ± 6.3 μg kg⁻¹, was associated with a peak in the general usage and production of Hg chemicals and goods. We used the tree ring record to reconstruct past atmospheric Hg levels using a simple model of Hg distribution between the larch tree rings and atmosphere. The precision of the tree ring model was checked against the results of air Hg measurements during the CFM remediation 30 years ago. According to the tree ring archives, the highest air Hg concentrations in the 1920s in Marktredwitz were over 70 ng m⁻³. Current air Hg levels of 1.18 ng m⁻³, assessed in the city of Marktredwitz, indicate the lowest air Hg in the past 150 years, underscoring the effective remediation of the CFM premises 30 years ago.
Mostrar más [+] Menos [-]Occurrence, spatial distribution, and partitioning behavior of marine lipophilic phycotoxins in the Pearl River Estuary, South China Texto completo
2022
Li, Jing | Ruan, Yuefei | Wu, Rongben | Cui, Yongsheng | Shen, Jincan | Mak, Yim Ling | Wang, Qi | Zhang, Kai | Yan, Meng | Wu, Jiaxue | Lam, Paul K.S.
The occurrence, spatial distribution, and partitioning behavior of 17 marine lipophilic phycotoxins (MLPs) in surface and bottom seawater, particulate organic matter (POM), and surface sediment from the Pearl River Estuary (PRE) were investigated to understand current contamination and the potential risks to marine ecosystems in this region. Nine MLPs were detected, including azaspiracid1−3, gymnodimine, okadaic acid, dinophysistoxin 1−2, pectenotoxin2 (PTX2), and homoyessotoxin, with Σ₁₇MLP concentrations ranging 545–12,600 pg L⁻¹ and 619−8,800 pg L⁻¹ in surface and bottom seawater, respectively; 0–294 ng g⁻¹ and 0.307–300 ng g⁻¹ dry weight (dw) in surface and bottom POM, respectively; and 3.90–982 pg g⁻¹ dw in surface sediment. Lower Σ₁₇MLP levels in the seawater were found at the mouth of the PRE, and gradually increased with increasing distance offshore. According to the calculated partition coefficient, the affinity of MLPs for the aquatic environment components was as follows (from highest to lowest): POM > seawater > sediment. Overall, the distribution and migration of MLPs in the PRE may depend on partition coefficients, the organic carbon fraction, and environmental factors.
Mostrar más [+] Menos [-]