Refinar búsqueda
Resultados 411-420 de 8,010
The role of hydrodynamic fluctuations and wind intensity on the distribution of plastic debris on the sandy beaches of Paraná River, Argentina Texto completo
2021
Garello, Nicolás | Blettler, Martín C.M. | Espínola, Luis A. | Wantzen, Karl M. | González-Fernández, Daniel | Rodrigues, Stéphane
Plastic in the environment is considered an emerging pollutant of global concern. In spite of intensive research, many questions remain open, such as the processes that drive the deposition and remobilization of plastic debris on river beaches. The objectives of this study were: i) to analyze the influence of the natural hydrological fluctuations and wind intensity on the distribution of mesoplastic (0.5–2.5 cm) and macroplastic (>2.5 cm) debris in beach sediments of a large river, ii) to describe the type of plastic debris found and iii) to explore potential relations between the number of items and weight of macro- and mesoplastics. Our results suggest that, during lowering water levels, flow removes the plastic debris and transports it further downstream. Conversely, when the beach sediments remain exposed during long periods, the plastic debris accumulates considerably. Nevertheless, the influence of wind intensity on plastic debris transport was comparatively negligible. In other words, in our study the water flow had a greater capacity to remobilize and transport plastic debris than the wind. The most abundant mesoplastic items were foam, hard plastic, film and small fragments of fishing line. The dominant macroplastic items recorded were pieces of fishing line (nylon) and cigarette filters (cellulose acetate), typically discarded by beach users. Other items found in large quantities were soft packaging elements (expanded polystyrene), hard plastic containers (polystyrene, polyethylene terephthalate) and beverage bottles (polyethylene terephthalate), typical items of domestic use in the Paraná River region. Finally, we found that the density of macroplastic items is highly correlated to the density of mesoplastic items, serving as surrogate for further estimations. Our results could help to develop better mitigation strategies in seasonal riverscapes, based on the influence of the hydrological cycle and the characteristics of the most abundant meso- and macroplastics.
Mostrar más [+] Menos [-]Association of acrylamide and glycidamide haemoglobin adduct levels with diabetes mellitus in the general population Texto completo
2021
Yin, Guangli | Liao, Shengen | Gong, Dexing | Qiu, Hongxia
The frequency and duration of exposure to acrylamide (AA) from the environment and diet are associated with a range of adverse health effects. However, whether long-term AA exposure is related to diabetes mellitus (DM) remains unknown. Data from 3577 adults in the National Health and Nutrition Examination Survey (NHANES) 2005–2006 and 2013–2016 aged ≥ 20 years was analysed. The main analyses applied multivariate logistic regression and restricted cubic spline models to investigate the associations between DM and AA haemoglobin biomarkers, including haemoglobin adducts of acrylamide and glycidamide (HbAA and HbGA), the sum of HbAA and HbGA (HbAA + HbGA), and the ratio of HbGA to HbAA (HbGA/HbAA) levels. After multivariable adjustment, the odds ratios (95% confidence intervals) for DM comparing the highest with the lowest AA haemoglobin biomarker quartiles were 0.71 (0.55, 0.93), 0.92 (0.71, 1.18), 0.80 (0.62, 1.03) and 1.95 (1.51, 2.51) for HbAA, HbGA, HbAA + HbGA and HbGA/HbAA, respectively. The restricted cubic spline model demonstrated that HbAA was linearly and inversely associated with risk of DM (P for trend = 0.013), while HbGA/HbAA was nonlinearly and positively associated with the prevalence of DM (P for trend <0.001). These results support for epidemiological evidence that the HbAA and HbGA/HbAA are significantly associated with DM. Further studies are warranted to infer the causal role of AA exposure in the prevalence of DM.
Mostrar más [+] Menos [-]Low-dose cadmium stress increases the bioaccumulation and toxicity of dinotefuran enantiomers in zebrafish (Danio rerio)? Texto completo
2021
Di, Shanshan | Qi, Peipei | Wu, Shenggan | Wang, Zhiwei | Zhao, Huiyu | Zhao, Xueping | Wang, Xiangyun | Xu, Hao | Wang, Xinquan
Co-occurrence of pesticides and heavy metals has attracted extensive attention. The enantioselective behaviors of dinotefuran to aquatic organisms have not been reported, and the effects of cadmium (Cd) was absent, which were investigated in this study at environmentally relevant concentrations. The enantioselective accumulation and elimination of dinotefuran enantiomers were observed in zebrafish, and it had tissue specificity. The S-dinotefuran concentrations were higher than R-dinotefuran in heads and viscera, but it was opposite in muscles. There existed competition between S-dinotefuran and R-dinotefuran, and the existence of S-dinotefuran might decrease the accumulation and elimination of the R-dinotefuran in zebrafish. When co-exposure to Cd and dinotefuran, the accumulation concentrations of dinotefuran enantiomers increased in zebrafish at the initial stage, which were opposite latterly. The accumulation concentrations of R-dinotefuran in R + Cd treatment in fish were 3.4 times higher than those in R-dinotefuran treatment, and the enantiomer fraction (EF) values changed from 0.484 to 0.195. The oxidative stress of S-dinotefuran on zebrafish was highest, followed by rac- and R-dinotefuran. Co-exposure to Cd led to toxicity increase for R-dinotefuran, the malonaldehyde (MDA) content decreased significantly in R + Cd treatment during 7–28 days, while obvious declination of MDA contents was found on the 28th day in R-dinotefuran treatment. Furthermore, compared to R-dinotefuran treatment, Cd increased the relative expression of cz-sod (3.4 times), cas3 (1.6 times) and p53 (5.7 times) in R + Cd treatment. The co-exposure of Cd might alter the environmental behaviors and toxicity effects of dinotefuran enantiomers in zebrafish, including the enantioselectivity. The effects of Cd on accumulation and toxicity of R-dinotefuran were greater than those on S-dinotefuran. Thus, it is necessary to consider the effects of coexistent metals to chiral pesticides in ecological risk.The enantioselective accumulation and elimination of dinotefuran enantiomers had tissue specificity. Cd increased the accumulation and toxicity of R-dinotefuran in zebrafish.
Mostrar más [+] Menos [-]A temporal record of microplastic pollution in Mediterranean seagrass soils Texto completo
2021
Dahl, Martin | Bergman, Sanne | Björk, Mats | Diaz-Almela, Elena | Granberg, Maria | Gullström, Martin | Leiva-Dueñas, Carmen | Magnusson, Kerstin | Marco-Méndez, Candela | Piñeiro-Juncal, Nerea | Mateo Pérez, Miguel Ángel
Plastic pollution is emerging as a potential threat to the marine environment. In the current study, we selected seagrass meadows, known to efficiently trap organic and inorganic particles, to investigate the concentrations and dynamics of microplastics in their soil. We assessed microplastic contamination and accumulation in ²¹⁰Pb dated soil cores collected in Posidonia oceanica meadows at three locations along the Spanish Mediterranean coast, with two sites located in the Almería region (Agua Amarga and Roquetas) and one at Cabrera Island (Santa Maria). Almería is known for its intense agricultural industry with 30 000 ha of plastic-covered greenhouses, while the Cabrera Island is situated far from urban areas. Microplastics were extracted using enzymatic digestion and density separation. The particles were characterized by visual identification and with Fourier-transformed infrared (FTIR) spectroscopy, and related to soil age-depth chronologies. Our findings showed that the microplastic contamination and accumulation was negligible until the mid-1970s, after which plastic particles increased dramatically, with the highest concentrations of microplastic particles (MPP) found in the recent (since 2012) surface soil of Agua Amarga (3819 MPP kg⁻¹), followed by the top-most layers of the soil of the meadows in Roquetas (2173 kg⁻¹) and Santa Maria (68–362 kg⁻¹). The highest accumulation rate was seen in the Roquetas site (8832 MPP m⁻² yr⁻¹). The increase in microplastics in the seagrass soil was associated to land-use change following the intensification of the agricultural industry in the area, with a clear relationship between the development of the greenhouse industry in Almería and the concentration of microplastics in the historical soil record. This study shows a direct linkage between intense anthropogenic activity, an extensive use of plastics and high plastic contamination in coastal marine ecosystems such as seagrass meadows. We highlight the need of proper waste management to protect the coastal environment from continuous pollution.
Mostrar más [+] Menos [-]Study on the real-world emissions of rural vehicles on different road types Texto completo
2021
Zhang, Shihai | Peng, Di | Li, Yi | Zu, Lei | Fu, Mingliang | Yin, Hang | Ding, Yan
To better understand the real-world emissions of rural vehicles (RVs) in China, 8 China II RVs and 18 China III RVs were tested on a provincial road, rural road and farm road using a portable emissions measurement system. The results are illustrated in contour maps of the speed, acceleration and emission rates and show that CO, HC, NOx and PM emissions differ for the three road types; however, the peak emission points all occur on the provincial road. The average CO, HC, NOx and PM emission factors based on distance for the China II RVs are 9.21, 4.05, 1.68 and 2.58 times higher, respectively, than those of the China III RVs. However, the average NOx emission factors of the China II and III RVs are 2.21 and 1.65 times higher than the corresponding recommended values of national emission inventory guideline, resulting in underestimation of overall RVs’ emissions. Distance-based emission factors of four pollutants ranked from high to low are farm road > rural road > provincial road. In contrast to the average emission factors of the China II RVs on the three road types, those of the China III RVs are significantly less in terms of distance and fuel consumption. The results of other researchers differ from those in this study: the CO emission factor of the China II RVs is 2.12 times higher than that of the China II light-duty diesel vehicles (LDDVs). The PM emission factor of the China III RVs is 2.67 times higher than that of the China III LDDVs. The NOx emission factors of the China II and III RVs are similar to those of the corresponding China II and III LDDVs. Our research increases the understanding of real-world emissions of RVs and can act as great references for policy makers developing RV emission baselines.
Mostrar más [+] Menos [-]Bioconversion of agro-industry sourced biowaste into biomaterials via microbial factories – A viable domain of circular economy Texto completo
2021
Kee, Seng Hon | Chiongson, Justin Brian V. | Saludes, Jonel P. | Vigneswari, Sevakumaran | Ramakrishna, Seeram | Bhubalan, Kesaven
Global increase in demand for food supply has resulted in surplus generation of wastes. What was once considered wastes, has now become a resource. Studies were carried out on the conversion of biowastes into wealth using methods such as extraction, incineration and microbial intervention. Agro-industry biowastes are promising sources of carbon for microbial fermentation to be transformed into value-added products. In the era of circular economy, the goal is to establish an economic system which aims to eliminate waste and ensure continual use of resources in a close-loop cycle. Biowaste collection is technically and economically practicable, hence it serves as a renewable carbon feedstock. Biowastes are commonly biotransformed into value-added materials such as bioethanol, bioplastics, biofuels, biohydrogen, biobutanol and biogas. This review reveals the recent developments on microbial transformation of biowastes into biotechnologically important products. This approach addresses measures taken globally to valorize waste to achieve low carbon economy. The sustainable use of these renewable resources is a positive approach towards waste management and promoting circular economy.
Mostrar más [+] Menos [-]Pre-pregnancy exposure to fine particulate matter (PM2.5) increases reactive oxygen species production in oocytes and decrease litter size and weight in mice Texto completo
2021
Guo, Yi | Cao, Zhijuan | Jiao, Xianting | Bai, Dandan | Zhang, Yalin | Hua, Jing | Liu, Wenqiang | Teng, Xiaoming
Exposure of females to fine particulate matter ≤2.5 μm in diameter (PM2.5) prior to pregnancy could produce adverse impact on fertility and enhances susceptibility of the offspring to a variety of diseases. In the current study, female C57BL/6 mice (6 weeks of age) were exposed to either concentrated PM2.5 or filtered air (average PM2.5 concentration: 115.60 ± 7.77 vs. 14.07 ± 0.38 μg/m⁻³) using a whole-body exposure device for 12 weeks. Briefly, PM2.5 exposure decreased anti-Müllerian hormone level (613.40 ± 17.36 vs 759.30 ± 21.90 pg mL⁻¹, P<0.01) and increased reactive oxygen species (ROS) level (45.39 ± 0.82 vs 24.20 ± 0.85 arbitrary unit in fluorescence assay, P<0.01) in oocytes. The exposure increased oocyte degeneration rate (21.5% vs 5.1%, respectively (P<0.01) and decreased the 2-cell formation rate (71.9% vs 86.0%, P < 0.01). Transcriptome profiling using RNA sequencing showed wide spectrum of abnormal expression of genes, particularly those involved in regulating the mitochondrial respiratory complex in oocytes and metabolic processes in blastocysts. The exposure decreased litter size (6 ± 0.37 vs 7 ± 0.26, P<0.05) and weight (1.18 ± 0.02 vs 1.27 ± 0.02 g, P<0.01). In summary, PM2.5 exposure decreased female fertility, possibly through increased ROS production in oocytes and metabolic disturbances in developing embryos. The cause-effect relationship, however, requires further investigation.
Mostrar más [+] Menos [-]Bacillus coagulans R11 consumption influenced the abundances of cecum antibiotic resistance genes in lead-exposed laying hens Texto completo
2021
Xing, Si-Cheng | Chen, Jing-Yuan | Cai, Ying-Feng | Huang, Chun-Bo | Liao, Xin-Di | Mi, Jian-Dui
Bacillus coagulans is regarded as a clean, safe and helpful probiotic additive in the production of livestock and poultry breeds. Some studies have also shown that Bacillus coagulans can adsorb heavy metals in water, even in the gut of animals. However, whether Bacillus coagulans feeding influences antibiotic resistance gene (ARG) abundance in the gut of lead-exposed laying hens is unknown. To better apply such probiotics in the breeding industry, the present study employed Bacillus coagulans R11 and laying hens in model experiments to test ARG changes in the cecum of laying hens under lead exposure and B. coagulans R11 feeding. The results showed that there was the trend for ARG abundance decreasing in feeding B. coagulans R11 without lead exposure to laying hens in the cecum; however, feeding B. coagulans R11 to laying hens exposed to lead obviously increased the abundances of aminoglycoside and chloramphenicol ARGs. Further experiment found that hydroquinone, dodecanedioic acid, gibberellin A14, alpha-solanine, jasmonic acid and chitin were involved in the abundances of ARGs in the cecum, in addition the abundances of these compounds were also significantly enhanced by lead exposure or combination effects of lead and B. coagulans R11. As a result, the ARG hazards increased with feeding B. coagulans R11 to laying hens exposed to lead, and the key compounds which influenced by the combination effects of lead and B. coagulans R11 might influence the ARGs abundance.
Mostrar más [+] Menos [-]A 150-year record of black carbon (soot and char) and polycyclic aromatic compounds deposition in Lake Phayao, north Thailand Texto completo
2021
Han, Yongming | Bandowe, Benjamin A Musa | Schneider, Tobias | Pongpiachan, Siwatt | Ho, Steven Sai Hang | Wei, Chong | Wang, Qiyuan | Xing, Li | Wilcke, Wolfgang
An improved understanding of the historical variation in the emissions and sources (biomass burning, BB vs. fossil fuel, FF combustion) of soot and char, the two components of black carbon (BC), and polycyclic aromatic compounds (PACs) may help in assessing the environmental effects of the Atmospheric Brown Cloud (ABC) in SE Asia. We therefore determined historical variations of the fluxes of soot, char, and PACs (24 polycyclic aromatic hydrocarbons (PAHs), 12 oxygenated PAHs (OPAHs), and 4 azaarenes) in a dated sediment core (covering the past ∼150 years) of Phayao Lake in Thailand. The soot fluxes have been increasing in recent times, but at a far lower rate than previously estimated based on BC emission inventories. This may be associated with a decreasing BB contribution as indicated by the decreasing char fluxes from old to young sediments. The fluxes of high- and low-molecular-weight (HMW and LMW) PAHs, OPAHs, and azaarenes all sharply increased after ∼1980, while the ΣLMW-/ΣHMW-PAHs ratios decreased, further supporting the reduction in BB contribution at the expense of increasing FF combustion emissions. We also suggest that the separate record of char and soot, which has up to now not been done in aerosol studies, is useful to assess the environmental effects of ABC because of the different light-absorbing properties of these two BC components. Our results suggest that besides the establishment of improved FF combustion technology, BB must be further reduced in the SE Asian region in order to weaken the ABC haze.
Mostrar más [+] Menos [-]Deposition of ambient particles in the human respiratory system based on single particle analysis: A case study in the Pearl River Delta, China Texto completo
2021
Jia, Shiguo | Zhang, Qi | Yang, Liming | Sarkar, Sayantan | Krishnan, Padmaja | Mao, Jingying | Hang, Jian | Chang, Ming | Zhang, Yiqiang | Wang, Xuemei | Chen, Weihua
It is important to evaluate how ambient particles are deposited in the human respiratory system in view of the adverse effects they pose to human health. Traditional methods of investigating human exposure to ambient particles suffer from drawbacks related either to the lack of chemical information from particle number-based measurements or to the poor time resolution of mass-based measurements. To address these issues, in this study, human exposure to ambient particulate matter was investigated using single particle analysis, which provided chemical information with a high time resolution. Based on single particle measurements conducted in the Pearl River Delta, China, nine particle types were identified, and EC (elemental carbon) particles were determined to be the most dominant type of particle. In general, the submicron size mode was dominant in terms of the number concentration for all of the particle types, except for Na-rich and dust particles. On average, around 34% of particles were deposited in the human respiratory system with 13.9%, 7.9%, and 12.6% being distributed in the head, tracheobronchial, and pulmonary regions, respectively. The amount of Na-rich particles deposited was the highest, followed by EC. The overall deposition efficiencies of the Na-rich and dust particles were higher than those of the other particle types due to their higher efficiencies in the head region, which could be caused by the greater sedimentation and impaction rates of larger particles. In the head region, the Na-rich particles made the largest contribution (30.5%) due to their high deposition efficiency, whereas in the tracheobronchial and pulmonary regions, EC made the largest contribution due to its high concentration. In summary, the findings of this initial trial demonstrate the applicability of single particle analysis to the assessment of human exposure to ambient particles and its potential to support traditional methods of analysis.
Mostrar más [+] Menos [-]