Refinar búsqueda
Resultados 411-420 de 684
Characteristics, Abundance and Polymer Type of Microplastics in Anadara granosa (Blood Clam) from Coastal Area of Palopo City Texto completo
2024
Abd. Gafur Rahman, Muhammad Farid Samawi and Shinta Werorilangi
Plastic waste in marine waters will undergo a degradation process that breaks down large plastic pieces into smaller particles called microplastics. The abundance of microplastics, caused by their small size (<5mm) can be easily indirectly consumed by aquatic animals. Anadara granosa is one of the bivalves that is quite vulnerable to microplastic contamination because it has the nature of a filter feeder which means it can sift particles and organic matter around it. The purpose of this study was to determine the characteristics, abundance, and types of microplastic polymers in blood clams (A. granosa). The results of microplastic observations made on 60 blood clams were 153 microplastic particles identified from 47 individuals (78%) of contaminated blood clams with an average microplastic abundance of 0.591 ± 0.083 item/gr. Fiber-type microplastics are the most dominant form found and blue is the most dominant color found in the sample. Based on the average abundance of microplastics in Anadara granosa in the coastal area of Palopo City, it is lower than several studies that have been conducted previously. Fourier Transform-Infra Red was conducted to determine the type of polymer in microplastics. Three types of polymers were found in the Anadara granosa samples polyethylene terephthalate (PET), polystyrene, and polyester. The three types of polymers have effects on human health such as respiratory problems, skin irritation, and genotoxicity. Action is needed to prevent microplastic pollution in Palopo City’s rivers before microplastic pollution becomes more severe in the future.
Mostrar más [+] Menos [-]Nephrotoxicity of Cylindrospermopsin (CYN) and Microcystin-LR (MC-LR) on Mammalian Kidney: Wistar Rat as a Model Assessment Texto completo
2024
H.A.S.N. Abeysiri, J.K.P. Wanigasuriya, T.S. Suresh, D.H. Beneragama and P.M. Manage
Naturally derived cyanotoxins, cylindrospermopsin (CYN), and microcystin-LR (MC-LR) have shown hepatotoxic and nephrotoxic effects in several studies. The present study aimed to determine the possible nephrotoxicity of MC-LR and CYN on mammalian kidneys using male Wistar rats as an animal model. Potential nephrotoxicity was evaluated at different doses of CYN (0.175 μg.kg-1, 0.140 μg.kg-1, 0.105 μg.kg-1) and MC-LR (0.105 μg.kg-1, 0.070 μg.kg-1, 0.035 μg.kg-1) was observed. Water samples from dug wells contaminated with CYN (0.161 μg.kg-1) and MC-LR (0.091 μg.kg-1) from the Padaviya area in Anuradhapura, Sri Lanka were used as environmental samples. The control groups were treated with distilled water. The exposure time of rats to the toxin was 90 days. Evaluation of urinary creatinine, serum creatinine, and Kidney Injury Molecule-1 (KIM-1) were estimated using standard protocols. A significant increase in serum creatinine levels was observed in all CYN and MC-LR treated groups (p<0.05) after 7 and 42 days of exposure, respectively, compared to control. It was found a decrease of urine creatinine when rats were treated with different concentrations of CYN and MC-LR (p<0.05) after 7 days compared to the control. The highest KIM-1 concentrations were recorded at 0.175 μg.kg-1 of CYN and 0.105 μg.kg-1 of MC-LR. The concentrations of KIM-1 in the control groups for CYN-treated and MC-LR-treated were not detected. Luminal protein, nuclear pyknosis, mild tubular epithelial swelling, vascular congestion, and interstitial inflammation in CYN and MC-LR treated groups were common. No predominant changes were observed in the control groups treated with CYN and MC-LR. The results of the present study confirm that the consumption of CYN and MC-LR-contaminated water may lead to kidney injury in Wistar rats.
Mostrar más [+] Menos [-]GIS-Based Mapping of the Water Quality and Geochemical Assessment of the Ionic Behavior in the Groundwater Aquifers of Middle Ganga Basin, Patna, India Texto completo
2024
Mohammad Masroor Zafar, Mohammed Aasif Sulaiman and Anupma Kumari
The study implemented Geographic Information System (GIS) techniques and multivariate hydrogeochemical analysis to evaluate the spatial-temporal and seasonal variation in the groundwater quality of Patna, India. For this purpose, sixty groundwater samples were collected and analyzed for major anions and cations during the pre-monsoon, monsoon, and post-monsoon seasons of 2019-2020. The physicochemical parameters such as pH, EC (Electrical Conductivity), TDS (Total Dissolved Solids), TH (Total Hardness), Ca2+, Mg2+, Na+, K+, HCO3-, Cl-, SO42- were considered to evaluate the water quality index. The result revealed degradation in groundwater quality from pre-monsoon (49.21) to post-monsoon (74.48). EC, TDS, TH, Mg2+, Na+, Ca2+, K+, and HCO3- ions were found accountable for high WQI values at various sampling sites during different seasons. Spatial maps showed that 45 % of the sampling stations exhibited poor quality in all three seasons, where the eastern part of the studied region was revealed to be the most affected area. The application of multivariate statistical methods and hydrogeochemical investigation has clearly defined the dominant role of the weathering process, and reverse ion exchange mechanism in controlling the aquifer’s ionic chemistry. Moreover, poor seepage system, and waste leachate from the surface have been found as the main cause of high levels of Na+, K+, and Cl- in the eastern part of Patna.
Mostrar más [+] Menos [-]Production of Amylase by Solid State Fermentation Using Agricultural Waste Texto completo
2024
M. M. Morbia, A. A. Pandey, P. K. Mahla and S. N. Gohil
This study presents a comprehensive investigation into the production of amylase, a crucial enzyme with wide-ranging industrial applications, using locally sourced substrates from Kachchh, Gujarat. The research employed the Bacillus licheniformis strain and substrates such as coconut, rice husk, wheat bran, paddy straw, and maize straw. The study found paddy straw to be the most promising substrate for amylase production. The research also systematically optimized various process parameters for amylase production in Solid-State Fermentation (SSF) using the One Variable at a Time (OVAT) method. These parameters included incubation period, temperature, inoculum level, additional carbon sources, starch concentrations, additional nitrogen sources, initial pH, different mineral salt ions, initial moisture level, and surfactants. The results showed that the optimal conditions for maximum amylase yield were an incubation period of 48 hours, an incubation temperature of 35°C, an inoculum level of 10%, starch as the additional carbon source, a starch concentration of 2.5%, yeast extract as the additional nitrogen source, an initial pH of 7, NaCl as the mineral salt, an initial moisture level of 75%, and Tween 80 as the surfactant. This research provides a reliable and sustainable approach to enzyme production, offering valuable insights for the optimization of the solid-state fermentation process for maximum amylase production.
Mostrar más [+] Menos [-]Experimental Investigation on Photocatalytic Degradation of Refractory Organics in Biologically Treated Tannery Effluent Using Photocatalysis Texto completo
2024
S. Hema and S. Kavya
There is a pressing demand for the introduction of environmentally safe technologies for the industries that supply the basic needs of industrialized societies. Advanced Oxidation Processes may become one of the answers to these uprising pollution management problems in the near future. The present investigation aimed to reduce the refractory organics present in the biologically treated (Activated Sludge Process) tannery effluent using Photocatalysis. The optimum time, pH, dosage of H2O2, and mass of NPAC required for the effective treatment using photocatalysis were found to be 60 mins, 8, 0.2 mg.L-1, and 1g. 100 mL-1, respectively. Although the efficiency of homogeneous photocatalysis was found to be higher than that of heterogeneous photocatalysis, the biodegradability was higher in the latter, with a value of 0.26. The experimental results have proved that photocatalysis could be a promising technology to reduce the refractory organics present in the tannery effluent.
Mostrar más [+] Menos [-]Assessment of Microplastic Pollution in Fresh Fish and Pindang Fish and its Potential Health Hazards in Coastal Communities of Banyuwangi Regency, Indonesia Texto completo
2024
Lilis Sulistyorini, Novi Dian Arfiani, Muhammad Addin Rizaldi, Leka Lutpiatina and Nurul Izzah Abdul Samad
This study aimed to analyze the microplastic contamination of fresh and pindang fish and its health impact on the coast of Muncar, Banyuwangi Regency, Indonesia. In this study, a total of 115 respondents participated, providing questionnaire data on their fish consumption habits and health problems. Subsequently, spearman’s correlation coefficient, a non-parametric statistical test, was used to analyze the questionnaire data. This study also included 100 samples of marine fish, consisting of 89 fresh fish and 11 pindang fish from various types of marine species. The content of microplastic polymers detected through FTIR (Fourier-Transform Infrared Spectroscopy) was around 3-5 microplastic polymers/fish samples, and the most dominant were Polyethylene, Polyester, Polycaprolactam (Nylon 6) and Polyamide. This study showed that 94 percent of fish samples contained microplastics and only 6 percent of samples did not contain microplastics. The intensity of pindang fish consumption was positively correlated with respondents’ health symptoms and problems. Subsequently, implementing effective waste management systems and educational programs in the coastal areas is crucial in reducing the pollution of seawater resulting from inadequate waste disposal practices.
Mostrar más [+] Menos [-]Navigating the Global Environmental Agenda: A Comprehensive Analysis of COP Conferences, with a Spotlight on COP28 and Key Environmental Challenges Texto completo
2024
Sabina Akhtar, S. Shaima, G. Rita, A. Rashid and A. J. Rashed
The purpose of the research work is to explore the objective and competence of COP (Conference of Parties) in the context of environmental issues and climate change management and this is performed by evaluating respective articles published in the context of the subject. COP is found efficient in empowering global nations to be aligned with the objective of sustainable growth by making corrective negotiations and agreements as per the current and future environmental issues like the greenhouse effect and air pollution. COP helps ensure environmental issues are fixed by conducting benchmark index-based performance reviews and analyses. It has been observed that the agenda significantly contributes to the green economy, as it promotes sustainable change and development in the environment, society, and economy. A significant innovative strategy was developed at the conference to reduce global temperatures and emissions. In this context, the development of the EV sector plays a crucial role in mitigating environmental impact. The COP28 conference is addressing the climate and nature crisis, considering it a global health emergency. Methodology states that the literature search is conducted from peer-reviewed journal articles from authentic sources like Wiley’s Online Library and Science Direct Pages. Only the journals that were published after the year 2019 have been used in the study. Also, it is seen that COP28 (2023) conventions focused on global warming, climate change, and the production of a green economy, which is continuously being considered, and also, the implications and steps that are required to be taken are discussed.
Mostrar más [+] Menos [-]Estimation of Surface and Groundwater Interaction by Stable Isotopic Techniques – A Case Study of Chengalpattu District, OMR Region Texto completo
2024
Surendar Natarajan
Isotopes are atoms of an element having the same atomic number but different mass numbers. Isotopes in hydrology and water resources are used for identifying its occurrence, movement, residence times, recharge, and discharge process. Stable isotopes of hydrogen(δ2H) and oxygen(δ2O) are used for identifying the surface and groundwater interactions as they constitute hydrogen and oxygen. In this study oxygen and hydrogen stable isotopes are used to identify surface and groundwater interaction in Old Mahabalipuram Road (OMR) regions of Chengalpattu district. The precipitation, lake, surface, and groundwater were collected during pre-monsoon, monsoon, and post-monsoon seasons. The collected sample is analyzed for stable isotopic compositions of oxygen and hydrogen seasonal-wise. The measured stable isotopic compositions during pre-monsoon season of stable oxygen are -4.29 to -2.00 and stable hydrogen are -29.39 to -24.67. The isotopic compositions during monsoon season range from -4.72 to -4.00 and for hydrogen ranges from -29.39 to -23.50. During monsoon season the depletion of isotopic composition is seen and the enrichment of isotopic composition is observed during pre-monsoon season. The variation in stable isotopic composition of oxygen and hydrogen are observed. A Groundwater Water Meteoric Water Line (GMWL) is developed for the study area, and it is compared with a Local Meteoric Water Line (LMWL) for better interpretation of the results. A slight deviation is observed from that of GMWL to LMWL mostly due to isotopic depletion and evaporation effects. From the analysis, a good correlation exists between precipitation and surface water in the study area indicating about recharge mechanism existing in the study area. The groundwater recharge is observed during monsoon seasons and discharge is more towards the pre-monsoon seasons.
Mostrar más [+] Menos [-]Quantification of the Few Parameters and Metallic Elements in the Quaternary Sediments of “Baie Du Repos” and their Interrelation Texto completo
2024
M. T. Moulaye Taher, A. M. El Mokhtar, E. C. S’Id and A. Mahfoudh
Mauritania is a fishing country. However, the Mauritanian coast is increasingly exposed to environmental issues mainly due to anthropogenic activities such as the mining, gas, oil, and fishing industries, as well as new agricultural practices that unreasonably use inputs. Environmental monitoring of the Mauritanian coast faces several challenges; thus, improving the fisheries sector begins with enhancing the state of marine ecosystems and implementing environmental monitoring adapted to climatic conditions and local needs. This study aims to evaluate the quality of the sediments of the “Baie du Repos” in the town of Nouadhibou, Mauritania, through the study of organic matter and the quantification of trace metallic elements in the Quaternary sediments of the Bay. Six samples deemed representative of this Bay were taken and transported to the laboratory. The physicochemical analysis of these samples shows that the superficial horizons of 30 cm depth have overall organic matter contents higher than the average threshold value proposed by the literature for 4 out of 6 of the points studied. The contents recorded for the different metallic trace elements indicate that point 1 is the most exposed to contamination, with the highest concentrations of cadmium, lead, copper, iron, and zinc. The ACP (Principal Component Analysis) showed that the metallic trace elements Pb, Cu, Fe, Cd, and Zn are closely related and evolve positively in the same direction. Additionally, it was found that the points studied are divided into three groups: Group 1 contains only point 1, which is the most exposed to contamination by these toxic elements (Pb, Cu, Zn, Fe, and Cd). Group 2 contains points 3, 5, and 6, which are moderately contaminated by metallic elements with a significant dominance of organic matter (OM). Finally, Group 3 is the least contaminated, with a very high content of organic matter (OM).
Mostrar más [+] Menos [-]Combined Application of Biochar and Silicon Fertilizer for Improved Soil Properties and Maize Growth Texto completo
2024
Muhammad Wasil Bin Abu Bakar, M. K. Uddin, Susilawati Kasim, Syaharudin Zaibon, S. M. Shamsuzzaman, A. N. A. Haque and A. Reza
Biochar can be a good soil amendment to reduce the soil pH, increase crop growth rate, and improve the efficient use of fertilizer. Other than that, silicon fertilizer also would promote photosynthetic ability on plant development that would help to produce high yield. In this work, a series of experiments was conducted to observe the effect of rice husk biochar and silicon fertilizer on the maize growth rate and soil pH. A 45-day pot experiment in the greenhouse with three replicates of 9 experimental treatment combinations of RHB at two rates (5 and 2.5 t.ha-1) with silicon fertilizer at three rates (125%, 100%, 75%), sole biochar (10 t.ha-1), sole silicon fertilizer (100%) and control (NPK) to observe the best rate and combination to improve growth rate and change in soil chemical in acid soil. The result showed that the co-application of sole biochar and biochar with Silicon significantly improved growth development, increased photosynthesis rate, altered soil pH, and reduced Fe concentration compared to control. The plant height increased 88.35% from T4 (5 t.ha-1 RHB + 100% Si) compared to the control and the conductance was higher in T4 (0.53) followed by T8 (0.438) while T1 (0.071) recorded the lowest conductance. The shoot fresh weight was higher in T4 (127.83 g) followed by T8 (57.14 g). However, the weight increased by 343.7% at T4 followed by T8 (2.5 t.ha-1 RHB + 75% Si) at 98.33%. The highest pH increment of 1.24 units (T1 = 5.53, T4 = 6.77) of soil pH was noted from T4 (5 t.ha-1 RHB + 100% Si) compared to control (NPK), and the highest total Fe in soil was observed from T1 (442.30 mg.kg-1). The current study results showed that T4 (50% RHB + 100% Silicon) was the best treatment over the other rates of RHB and silicon increased plant height, photosynthetic rate, and biomass.
Mostrar más [+] Menos [-]