Refinar búsqueda
Resultados 441-450 de 502
Effective Utilization of Bio and Industry Wastes to Produce Thermal Insulation Concrete: A Novel Solution for Energy-Saving Buildings
2024
Jerlin Regin, Maria Rajesh Antony, Raya Said Mohammed Al-Zaabiya, May Darwish Ali Al Balushi, Hamdah Ali Ahmed Al Shehhi, Nooralsnaa Abdallah Mohammed Al-Farsi and Athari Khalifa Handi Al-Saadi
The research addressed the effective and sustainable ways to enhance the thermal insulation properties of concrete without compromising its structural integrity. Traditional methods of enhancing thermal insulation in buildings, such as using thick layers of insulation materials, can be costly and may not always be practical in certain settings. Additionally, the disposal of waste materials such as date palm fiber, shopping plastic bags, and thermocol beads presents an environmental challenge. Therefore, this study aims to investigate the potential use of these waste materials as additives in concrete to improve its thermal insulation properties while also providing a sustainable solution for waste disposal. Date palm fiber is a natural material that is widely available in the Gulf region. Plastic bags are a huge waste from the shops every day, and from the packing materials, this thermocol is a huge waste product. We have to recycle it very efficiently to protect the environment. Three types of special materials, such as thermocol beads (30%), date palm fiber (3%) & shopping plastic bag fiber (3%), were tested in this research. Thermocol beads, when used, reduce their strength and increase the thermal resistance of concrete, while date palm fiber and shopping bag waste fiber, when used, increase the strength of concrete and also increase the thermal resistance of concrete, so it is an excellent reinforcing material and thermal barrier for shopping plastic bags fiber and date palm fiber. Based on this research result, when thermocol beads are used, they prevent heat by 42 percent, while when added with date palm fiber and plastic fiber, they also block heat by an average of 30% percent; thus, all three ingredients are considered excellent thermal insulation material. The reduction in thermal conductivity was attributed to the formation of air voids and the low thermal conductivity of the waste materials. The density of the concrete decreased with the addition of the waste materials. The study suggests that the incorporation of date palm fiber, shopping bag waste fiber, and thermocol beads can be an effective way to enhance the thermal insulation properties of concrete while also providing an environmentally sustainable solution for waste disposal. It will boost green energy technology in the construction industry.
Mostrar más [+] Menos [-]Energy Requirement of Wastewater Treatment Plants: Unleashing the Potential of Microalgae, Biogas and Solar Power for Sustainable Development
2024
Urvashi Gupta, Abhishek Chauhan, Hardeep Singh Tuli, Seema Ramniwas, Moyad Shahwan and Tanu Jindal
Sustainable energy legislation in the modern world is the primary strategy that has raised the benchmark for energy and environmental security globally. The rapid growth in the human population has led to rising energy needs, which are predicted to increase by at least 50% by 2030. Waste management and environmental pollution present the biggest challenge to developing countries. The improvement of energy efficiency while ensuring higher nutritional evacuation wastewater treatment plants (WWTPs) is a significant problem for many wastewater treatment plants. Some treatment techniques require high energy input, which makes them expensive to remediate water use. Pollutants like chemical pesticides, hydrocarbons, colorants (dyes), surfactants, and aromatic compounds are present in wastewater and are contributing to other problems. Israel consumes 10% of the global energy supply, significantly more than other countries. The lagoon and trickling filters are the most widely used technologies in South African WWTPs, where the electricity intensity ranges from 0.079 to 0.41 kWh.m-3 (Wang et al. 2016). Korea and India use almost the same energy (0.24 kWh.m-3). An estimated one-fifth of the energy used in a municipality’s WWTPs is used for overall public utilities, and this percentage is anticipated to rise by 20% over the next 15 years owing to expanding consumption of water and higher standards. In this review paper, we examined the potential for creating energy-self-sufficient WWTPs and discussed how much energy is currently consumed by WWTPs. The desirable qualities of microalgae, their production on a global level, technologies for treating wastewater with biogas and solar power, its developments, and issues for sustainable development are highlighted. The scientific elaboration of the mechanisms used for pollutant degradation using solar energy, as well as their viability, are the key issues that have been addressed.
Mostrar más [+] Menos [-]Mapping and Quantifying Integrated Land Degradation Status of Goa Using Geostatistical Approach and Remote Sensing Data
2024
V. G. Prabhu Gaonkar, F. M. Nadaf and Vikas Kapale
Globally, land degradation is becoming a grave concern. Over the years, conditions such as drought, extreme weather events, pollution, changes in land use land cover, and desertification have intensified and led to land degradation, affecting both ecological and economic processes. Equally, during the last two centuries, population and urbanization have amplified manifold and increased the demand for additional food and shelter, resulting in alteration in land use land cover, over-grazing, and over-cultivation, loss of nutrient-rich surface soil, greater runoff from the more impermeable subsoil, and reduced water availability. Geographically, Goa is a highly diversified state. It is sandwiched between the West Coast and the Western Ghats. The state is blessed with beaches, mangroves, backwaters, wetlands, wildlife sanctuaries, evergreen forests, barren lands, and other vital ecosystems. The State of Goa, on average, receives more than 3000 millimeters of rainfall annually with high surface runoff. Using both primary and secondary data, this study sought to investigate and quantify the state’s land degradation. Secondary data came from satellites and other sources, while primary data came from field observation and ground truthing. Land degradation factors related to soil loss and the spatial pattern of soil erosion are predicted and evaluated using the Revised Universal Soil Loss Equation (RUSLE) method. Landsat-8 OLI-TIRS images were utilized to decide land use and cover (C factor), while DEM information was utilized to assess (LS factor). A soil map and rainfall data were collected to acquire a better understanding of soil erodibility (K factor) and rainfall erosivity (R factor). The kriging interpolation technique was used to gain a deeper comprehension of land degradation.The purpose of this paper is to comprehend the concept of integrated land degradation and how it affects the environment of Goa. Using remote sensing data and geostatistical methods, the study creates a comprehensive map of land degradation in the region by identifying and analyzing the various forms of land degradation in Goa. The paper also looks at how rainfall and the amount of land cover affect the rate of soil erosion in Goa. According to the findings, intense rainfall makes the eastern part of Goa particularly susceptible to soil erosion, and bare soil has a greater potential for erosion than vegetated land. The paper concludes that comprehensive land degradation mapping can be a useful tool for developing efficient land management strategies to preserve soil and encourage sustainable development in the region.
Mostrar más [+] Menos [-]Design and Modelling of Urban Stormwater Management and Treatment Infrastructure for Communities in Wuse, Abuja
2024
O. J. Oyebode and A.M. Umar
Effective stormwater management can be used to regulate water quantity and quality for environmental sustainability, flood control, pollution reduction and other advantages of civil engineering infrastructures. Pollution of the environment and contamination of water sources can emanate from improper stormwater management. This study used a small-scale model of rainwater harvesting to analyze the design and model of urban stormwater management and treatment infrastructure for the neighborhoods in Abuja. The water quality of the treated stormwater retrieved has improved as a result of the usage of memory foam, alum, and chlorine to filter out contaminants and pathogens. With the fictitious stormwater treatment model created for this study, average values of the physicochemical parameters were collected from the stormwater discharge after it had been filtered and treated. The use of potash alum has had a variety of effects on the water’s quality. From 697 mg.L-1 to 635 mg.L-1, the total dissolved solids dropped. The DO dropped from 5.87 mg.L-1 to 3.92 mg.L-1 as well. Additionally, the turbidity rose from 4.42 FNU to 4.58 FNU, and the salinity rose from 0.7 PSU to 1.44 PSU, respectively. pH decreases from 19.78 to 15.17 mg.L-1, BOD decreases from 8.35 to 6.51, and COD decreases from 2.55 to 1.9. Calcium hardness has decreased from 287 mg.L-1 to 265.83 mg.L-1. The conductivity increases marginally from 3.24 ms.cm-1 to 3.82 ms.cm-1. The Fe2+ and Zn2+ ions exhibit a little decrease from 0.143 mg.L-1 to 0.055 mg.L-1 and from 0.092 mg.L-1 to 0.045 mg.L-1, respectively. Due to inadequate or nonexistent drainage systems in the many states and villages throughout the country, stormwater run-off management and treatment in Nigeria have been a colossal failure. Effective stormwater management can be sustained by using legal and environmental laws.
Mostrar más [+] Menos [-]Heavy Metal Concentration in Fish Species Clarias gariepinus (Catfish) and Oreochromis niloticus (Nile Tilapia) from Anambra River, Nigeria
2024
E. B. Ogbuene, A. M. Oroke, C. T. Eze, E. Etuk, O. G. Aloh, F. E. Achoru, J. C. Ogbuka, O. J. Okolo, A. V. Ozorme, C. J. Ibekwe, C. A. Eze and S. Akatakpo
Studies have emphasized that the presence of heavy metals in freshwater fish represents a global public health issue. Nigeria, being a developing nation with less emphasis on the quality of seafood consumed by the residents, ranks this study very vital. The policy implication of this study is the advancement of a healthy population in contemporary Nigeria. Hence, this study assessed heavy metal concentration in two fish species, Clarias gariepinus (Catfish) and Oreochromis niloticus (Nile Tilapia), in the Anambra River. The sample included twenty fishes, of which eighteen were collected from the three sampling locations (the fish ports of Anambra River), namely Otu-nsugbe, Otuocha, and Ikemivite) while two control samples were collected from a pond about 200 m away from the river. The levels of heavy metals were determined using Varian AA 240 atomic absorption spectrophotometer (AAS). The results showed that the concentrations of heavy metals (cadmium and arsenic) in the sampled fishes from Anambra River exceeded the joint World Health Organization and Food and Agriculture Organization (FAO/WHO) standard for fish and fish product consumption, while the concentration of chromium, mercury, and lead are within the permissible limit. The study also showed the distribution of the heavy metals in the fish organ varies among fish species. Heavy metals occur higher in Clarias garepinus than in Oreochromis niloticus, while tissue preference for heavy metal accumulation is in the order of gill > liver > muscle. It was recorded from this study that the heavy metal concentration in the fish from the pond is generally higher than the fish from the river for some metals. The high level of heavy metals in the sampled fish was attributed to heavy metals contamination of the river as a result of various anthropogenic activities such as mining, burning of fossil fuel and emission from the exhaust of boats/vehicles, overuse of fertilizers and pesticides, discharge of effluent, sewage, and hospital waste. This study concluded that long-term consumption of fish from the river may pose health risks to the consumers due to the possible bioaccumulation of heavy metals, especially cadmium and arsenic. It was recommended that continuous monitoring of heavy metal levels in the fish and water, public awareness, and appropriate legislative provisions should be put in place to ensure that harvested fish and fish products may be safe for human consumption.
Mostrar más [+] Menos [-]Towards a Greener Tomorrow: Exploring the Potential of AI, Blockchain, and IoT in Sustainable Development
2024
Megha Chauhan and Deepali Rani Sahoo
This article examines the potential for artificial intelligence (AI), blockchain, and the Internet of Things (IoT) to advance sustainability. Through a literature review and critical analysis, the study evaluates the possible advantages, difficulties, and opportunities of utilizing these technologies to support a sustainable future. The research study emphasizes how effective AI is at streamlining resource management, increasing system efficiency, and optimizing energy use. It focuses on the potential of blockchain to improve supply chain accountability and transparency, and it also discusses the game-changing potential of IoT to improve resource management. However, some issues must be resolved, including excessive costs, technological difficulties, data privacy concerns, and social repercussions. The essay advocates creating multidisciplinary research programs, funding R&D, and supporting collaborative relationships. It also suggests creating sustainable implementation plans, prioritizing ethical issues and data governance, and encouraging information exchange and awareness. By accepting these proposals, stakeholders may leverage the promise of green technology and innovation to build a sustainable future. It is also clear that the Internet of Things (IoT) can potentially optimize resource management. Real-time data on a variety of topics, including traffic conditions, air and water quality, and water management, can be provided through IoT-enabled sensors. Cities may reduce traffic, increase energy efficiency, enhance environmental conditions, and encourage sustainable water management techniques by utilizing this data to inform their decisions. However, serious consideration must be given to data privacy, security, scalability, and interoperability issues to ensure IoT solutions’ ethical and efficient adoption. Despite their enormous potential, the paper acknowledges the difficulties and constraints in implementing these technologies. Significant obstacles include high implementation costs, complex technical requirements, and the requirement for adequate data privacy and security safeguards. A sustainable and inclusive future also requires resolving ethical issues, including algorithmic prejudice, social fairness, and equitable access to technology. The report recommends encouraging cooperative relationships between academia, business, government, and communities to address these issues. Research and development investments are required to evaluate these technologies’ practical use, scalability, and economic viability. In addition, multidisciplinary research initiatives can comprehensively comprehend green technology and innovation’s social, economic, and environmental effects. It has been concluded that there is great potential for future technologies, such as AI, blockchain, and IoT, to advance sustainability. Stakeholders can use these technologies’ revolutionary potential to build a sustainable future by resolving obstacles, promoting collaboration, and doing additional research. To ensure the ethical and successful application of green technology and innovation for the benefit of the environment and future generations, it is essential to prioritize ethical considerations, establish sustainable implementation strategies, and foster information exchange and awareness.
Mostrar más [+] Menos [-]Accumulation and Translocation of Heavy Metals in Hibiscus cannabinus Grown in Tannery Sludge Amended Soil
2024
Anita, Mahiya Kulsoom, Aneet Kumar Yadav, Monu Kumar, Kamla Pat Raw, Satguru Prasad and Narendra Kumar
Digested sludge wasted by tanneries is rich in nutrients and trace elements however, the presence of toxic metals restricts their use in agriculture. The present study explores the possible application of tannery sludge amendment for the cultivation of an energy crop, Hibiscus cannabinus. The toxicity of various sludge amendments (25, 50, 75, and 100%, w/w) was examined during early seedling growth, followed by metal accumulation potential by performing pot experiments. Chemical characterization revealed the presence of Cr (709.6), Cu (366.43), Ni (74.6), Cd (132.71), Pb (454.8) μg.g-1 in tannery sludge beside N (2.1%), P 3.8 & K 316.96 (kg.hec-1.) respectively. Germination of H. cannabinus exposed to sludge extracts ranged between 80 to 95%; Relative seed germination, 81.33 to 84.43%. Relative root growth, 0.9 to 1.16 cm; and germination index, 95 to 110%. It was found that sludge extracts have not caused adverse effects on seed germination and early seedling growth. Heavy metal accumulation was observed as follows: Ni (3.37, 2.38, 1.46 & 0.90 mg.kg-1) > Pb (10.59, 10.15, 5.26, & 2.84 mg.kg-1) > Cu (2.34, 2.24, 0.97 & 0.24 mg.kg-1) > Cd (2.31, 1.19, 1.33 & 1.12 mg.kg-1) > Cr (1458, 1136.12, 601.73 & 211.6 mg.kg-1) in 100, 75, 50, & 25% sludge amended soil, respectively. The bio-concentration pattern of metals was found to be in the order of root > leaf > stem. The findings of the present study give direction for the eco-friendly and cost-effective management of tannery sludge. Further, H. cannabinus can be used for the restoration of metal-contaminated agricultural land, however, results need to be corroborated with field trials.
Mostrar más [+] Menos [-]Beachgoers’ Knowledge, Perceptions, and Willingness to Pay for Sustainable Waste Management in Kuakata Sea Beach, Bangladesh
2024
Md. Al Amin and Md. Tanvir Ahmed
With rising public awareness and concern for environmental sustainability, calls for nature-friendly marine and beach litter management have grown louder. This study, employing logistic and ordinary least square regressions, explores tourists’ knowledge, perceptions, and willingness to pay (WTP) using data (n = 400) collected from Kuakata Sea Beach, Bangladesh. Results showed that approximately 99% of the respondents recognize the urgency for further development in the waste management system, while 53% are aware of it. Gender is identified as a statistically significant factor impacting beachgoers’ WTP – males are willing to pay more. Besides, visitors with higher incomes demonstrate the willingness to pay more. Additionally, 37% of the respondents think that appropriate information dissemination and raising awareness are critical to confronting this problem, and another 38% recommended proper placement of dustbins on the beach. These outcomes can be very useful in designing any relevant policies for promoting sustainable beach waste management.
Mostrar más [+] Menos [-]The Passive Environmental Effect of the Fungicide Benomyl on Soil Promoting Bacteria and Concentration of Some Important Soil Elements
2024
Zaid Raad Abbas, Aqeel Mohammed Majeed Al-Ezee, Sawsan Hassan Authman and Maan Abdul Azeez Shafeeq
Loam examples were gathered through the 2020-2021 rising periods, and the following measurements were made: Viable bacterial count by reducing root colonization. The outcomes of reviewing the impact of the fungicide Benomyl on development and viable microflora count revealed that the highest microbial count was in Al-Madaein 80 ×103 CFU/mL was recorded ., and the lowest count was 60 ×103 CFU/mL for the Aushtar area, The microbial viable count values for the affected microorganisms with Benomyl were decrease to 27×103 and 65 × 103 CFU/mL respectively. Those consequences specify that Benomyl has a robust choosiness contrary to microflora, especially when compared to the benomyl effect as folded dose, the microflora l count decreases to 25 ×103 CFU /mL in the Aushtar area and increases to 60 ×103 CFU/mL in Al-Madaein area. Whereas the study estimated the level of eight elements in soil (Mn, Fe, Cu, Zn, NO3, P, K, and NH4) cultured with Cyperus rotundus L. Which mentioned the effect of benomyl on these levels after three days of treatment. Mn concentration ranged between 5.96 to 9.11 ppm, while after fungicide benomyl, it decreased to 5.63 -6.53 ppm similar results were observed for other elements. The highest affected element was Mn in the Aushtar area. Those consequences designate that Benomyl has a stout fussiness in contrast to soil nutrients. The greatness of benomyl impacts on loam ingredients and procedures were minor, qualified to impact on mycorrhizal root foundation (reduction through benomyl).
Mostrar más [+] Menos [-]Underlying Anthropogenic Driving Factors of Forest Landscape Degradation in the Kilimanjaro World Heritage Site, Tanzania Using Survey-based Data
2024
E. A. Enoguanbhor, G.O. Chukwurah, E. C. Enoguanbhor, M.O. Isimah, A. E. O. Kosun, N. I. Ewurum and Eike Albrecht
This study aimed to investigate the underlying anthropogenic driving factors of forest landscape degradation in the Kilimanjaro World Heritage Sites (WHS), Tanzania using survey-based data. The essence is to support strategic policies for forest landscape protection and natural heritage sustainability. The research employed empirical data using mixed questionnaires of experts and residents to identify various indirect anthropogenic driving factors of forest degradation, analyze rural poverty and causal mechanisms as indirect anthropogenic drivers of forest degradation, and evaluate the level of awareness and community involvement in forest protection. ArcGIS was used to generate the Maps. About 140 sample sizes were utilized for this study. Using purposive and simple random techniques, about 46 and 100 mixed questionnaires were distributed to experts in forest guard and residents, respectively. Data were analyzed using quantitative and qualitative techniques. Findings showed that indirect factors of forest degradation include high tourism demand, poverty, culture and tradition of local communities, lack of forest protection and conservation education, and insufficient land availability. Also, findings showed that rural poverty as an indirect anthropogenic driving factor of forest degradation is attributed to unemployment in rural areas, inadequate land for agriculture, and insufficient productive forestry availability. Additionally, this study revealed that residents are aware that the forest is under the government’s protection, and most people in local communities are not involved in activities for forest protection. Therefore, the study suggests that the locals should be involved in the activities that promote forest protection for effective control and management. Alternative heating methods should also be explored to reduce much pressure on the available forest to improve the natural heritage sustainability of natural WHS found in Sub-Saharan Africa and other parts of the Global South.
Mostrar más [+] Menos [-]