Refinar búsqueda
Resultados 511-520 de 4,937
Statistical determination of crucial taxa indicative of pollution gradients in sediments of Lake Taihu, China Texto completo
2019
Li, Yi | Wu, Hainan | Shen, Yun | Wang, Chao | Wang, Peifang | Zhang, Wenlong | Gao, Yu | Niu, Lihua
In order to accurately monitor the changes in a freshwater ecosystem in response to anthropogenic stressors, microbe–environment correlations and microbe–microbe interactions were combined to determine crucial indicator taxa in contaminated sediments. The diversity, composition, and co–occurrence pattern of bacterial communities in 23 sediment samples collected from Lake Taihu were explored using 16S rRNA amplicon sequencing analysis. Fisher's exact test showed that the cluster analyses of samples could show a direct correlation between the relative abundance of bacterial communities and the physicochemical properties of the sediment (P < 0.0001), suggesting that bacterial communities can be used to monitor contamination gradients in freshwater sediments. According to the microbe–environment correlation, 24 orders and 60 families were initially identified via indicator species analysis as indicator taxa of different pollution levels. The co–occurrence network further showed that topological features of bacterial communities were clearly different at different pollution levels, although the diversity and composition of bacterial communities displayed similarities between minimally and moderately polluted sites. Indicator taxa were then screened for keystone species, which co–occurrence relationships showed the high degree and low betweenness centrality values (i.e. degree >5, betweenness centrality <1000) of the network. Nine orders and 13 families were finally extracted as crucial indicator taxa of the different pollution levels in eutrophic Lake Taihu. Obtaining crucial indicator taxa from environmental sequences allows to trace increasing levels of pollution in aquatic ecosystems and provides a novel mean to monitor watersheds sensitive to anthropic influences.
Mostrar más [+] Menos [-]Chronic exposure to dietary selenomethionine dysregulates the genes involved in serotonergic neurotransmission and alters social and antipredator behaviours in zebrafish (Danio rerio) Texto completo
2019
Attaran, Anoosha | Salahinejad, Arash | Crane, Adam L. | Niyogi, Som | Chivers, Douglas P.
Selenium (Se) is a metalloid of potential interest from both a toxicological and nutritional perspective, having a range of safe intake. The adverse neuro-behavioural effects of Se have been investigated in both humans and fishes, but little is known about its effects on social behaviours or the serotonergic signaling pathway in the brain. In the present study, we investigated the effects of chorionic dietary exposure to Se (as selenomethionine) at different concentrations (control, 2.1, 11.6 or 31.5 μg/g dry wt.) on antipredator avoidance, shoaling behaviour, and social group preferences in adult zebrafish (Danio rerio). In addition, we also measured the expression of important genes in the serotonergic pathway that influence social behaviours. After 60 days of exposure, the highest dose (31.5 μg/g dry wt.) caused the highest level of baseline fear behaviour, with fish swimming lower in the water column and in tighter shoals compared to fish in the other treatments. With high levels of baseline fear, these fish did not significantly intensify fear behaviours in response to predation risk in the form of exposure to chemical alarm cues. When individual fish were given an opportunity to shoal with groups of differing sizes (3 vs. 4 individuals), fish exposed to the high dose spent less time with groups in general, and only control fish showed a significant preference for the larger group. In the zebrafish brain, we found significant upregulation in the mRNA expression of serotonin receptors (htr1aa and htr1b), a transporter (slc6a4a), and tryptophan hydroxylase-2 (tph2), whereas there was a downregulation of the monoamine oxidase (mao) gene. The results of this study suggest that disruption of serotonergic neurotransmission might have been responsible for Se-induced impairment of antipredator and social behaviour in zebrafish.
Mostrar más [+] Menos [-]Toxicological effects of two organic ultraviolet filters and a related commercial sunscreen product in adult corals Texto completo
2019
He, Tangtian | Tsui, Mirabelle Mei Po | Tan, Chih Jui | Ma, Chui Ying | Yiu, Sam King Fung | Wang, Lixue | Chen, Te Hao | Fan, Tung Yung | Lam, Paul Kwan Sing | Murphy, Margaret Burkhardt
Corals are exposed to organic ultraviolet (UV) filters and other personal care product (PCP) ingredients in the environment, but the toxicities of organic UV filters and their related PCP to corals are not well understood. In this study, 7-day exposures were conducted to evaluate the toxicities and bioaccumulation of two organic UV filters, ethylhexylmethoxy-cinnamate (EHMC; octinoxate) and octocrylene (OC) (single- and combined-chemical tests), and diluted sunscreen wash-off water containing both active ingredients to the adult life stage of two hard coral species, Seriatopora caliendrum and Pocillopora damicornis. In the single-chemical tests, death (33.3%) and bleaching (83.3%) were only observed in the 1000 μg/L EHMC treatment of S. caliendrum. In the sunscreen product exposures, 5% sunscreen water (containing 422.34 ± 37.34 μg/L of EHMC and 33.50 ± 7.60 μg/L of OC at Day 0) caused high mortality in S. caliendrum (66.7–83.3%) and P. damicornis (33.3–50%), and tissue concentrations were up to 10 times greater than in the single-chemical exposures; co-exposure to EHMC and OC at similar levels to those in the sunscreen product resulted in bioaccumulation similar to the single-chemical tests. These results confirm the bioaccumulation potential of EHMC and OC and show that other ingredients in sunscreen products may increase the bioavailability of active ingredients to corals and exacerbate the toxicity of sunscreen products. Future studies on the toxicities of PCPs to aquatic organisms should not only focus on the toxicities of active ingredients.
Mostrar más [+] Menos [-]Response of bleached and symbiotic sea anemones to plastic microfiber exposure Texto completo
2019
Romanó de Orte, Manoela | Clowez, Sophie | Caldeira, K. (Ken)
Microplastics are emerging contaminants in the marine environment. They enter the ocean in a variety of sizes and shapes, with plastic microfiber being the prevalent form in seawater and in the guts of biota. Most of the laboratory experiments on microplastics has been performed with spheres, so knowledge on the interactions of microfibers and marine organisms is limited. In this study we examined the ingestion of microfibers by the sea anemone Aiptasia pallida using three different types of polymers: nylon, polyester and polypropylene. The polymers were offered to both symbiotic (with algal symbionts) and bleached (without algal symbionts) anemones. The polymers were introduced either alone or mixed with brine shrimp homogenate. We observed a higher percentage of nylon ingestion compared to the other polymers when plastic was offered in the absence of shrimp. In contrast, we observed over 80% of the anemones taking up all types of polymers when the plastics were offered in the presence of shrimp. Retention time differed significantly between symbiotic and bleached anemones with faster egestion in symbiotic anemones. Our results suggest that ingestion of microfibers by sea anemones is dependent both on the type of polymers and on the presence of chemical cues of prey in seawater. The decreased ability of bleached anemones to reject plastic microfiber indicates that the susceptibility of anthozoans to plastic pollution is exacerbated by previous exposure to other stressors. This is particularly concerning given that coral reef ecosystems are facing increases in the frequency and intensity of bleaching events due to ocean warming.
Mostrar más [+] Menos [-]Effects of fly ash application on plant biomass and element accumulations: a meta-analysis Texto completo
2019
Yu, Chih-Li | Deng, Qi | Jian, Siyang | Li, Jianwei | Dzantor, E Kudjo | Hui, Dafeng
Fly ash generated from coal-fired power plants is a source of potential pollutants, but can be used as a soil ameliorant to increase plant biomass and yield in agriculture. However, the effects of fly ash soil application on plant biomass and the accumulation of both nutrient and toxic elements in plants remain unclear. Based on 85 articles, we conducted a comprehensive meta-analysis to evaluate changes in plant biomass and concentrations of 21 elements in plants in response to fly ash application. These elements included macro-nutrients (N, P, K, Ca, and S), micro-nutrients (B, Co, Cu, Fe, Mn, Mo, Ni, and Zn), and metal(loid)s (Al, As, Cd, Cr, Pb, and Se). Overall, fly ash application decreased plant biomass by 15.2%. However, plant biomass was enhanced by fly ash application by 11.6–29.2% at lower application rates (i.e. <25% of soil mass), and decreased by 45.8% at higher application rates (i.e. 50–100%). Belowground biomass was significantly reduced while yield was enhanced by fly ash application. Most of the element concentrations in plants were enhanced by fly ash application, and followed a descending order with metal(loid)s > micro-nutrients > macro-nutrients. Concentrations of elements tended to increase with an increase in fly ash application rate. Our syntheses indicated that fly ash should be applied at less than 25% in order to enhance plant biomass and yield but avoid high accumulations of metal(loid)s.
Mostrar más [+] Menos [-]Sediment characterisation and spatial distribution of heavy metals in the sediment of a tropical freshwater wetland of Indo-Burmese province Texto completo
2019
Kalita, Suravi | Sarma, Hari Prasad | Devi, Arundhuti
The sediment characterisation of wetlands belonging to the Northeastern Region of India particularly regarding the assessment of sediment carbon stock is very scanty. The presently available literature on the wetlands cannot be employed as a common model for managing the wetlands of the Northeastern Region of India as wetlands are a sensitive ecosystem with a different origin or endogenous interventions. Thereby, this research was conducted on Deepor Beel for investigating the spatial and seasonal variation of sediment parameters, the relationship between the parameters and pollution status of the wetland. Results revealed that the study area is of an acidic nature with a sandy clay loam type texture. Organic carbon, total nitrogen and available nitrogen were higher in sediments in the monsoon period. The mean stock of the sediment carbon pool of Deepor Beel is estimated to be 2.5 ± 0.7 kg m−2. The average non-residual fraction percentage (63.2%) of Pb was higher than the residual fraction. Zn content ∼490 mg kg−1 exceeding its effect range medium (ERM) was determined to suggest frequent biological adverse effects. Highest metal enrichment factor (EF) values were shown by Zn and Pb, which ranged between 78 and 255. Risk assessment code (RAC) values of Pb between 21 and 29% indicated its high bio-accessibility risk. Pearson's coefficient matrix revealed a low degree of positive correlation between organic carbon content and metal concentration. Principal component analysis revealed that the first component comprising of EC, basic cations and metals accounted for 62.3% of variance while the second component (OM, OC, TN, AN, AP) and the third component (pH) accounted for 21.8% and 7.0% of the variance, respectively. The present study revealed the adverse impact of human inputs on the Deepor Beel quality status.
Mostrar más [+] Menos [-]Assessment of airborne enteric viruses emitted from wastewater treatment plant: Atmospheric dispersion model, quantitative microbial risk assessment, disease burden Texto completo
2019
Pasalari, Hasan | Ataei-Pirkooh, Angila | Aminikhah, Mahdi | Jafari, Ahmad Jonidi | Farzadkia, Mahdi
From a health prospective, it is critical to provide a comprehensive model which integrates all the parameters involved in virus transmission and its consequences on human body. In order to estimate the health risks, for workers and residents, associated with an exposure airborne viruses emitted from a wastewater treatment (WWTP), the concentration levels of viruses in emitted bioaerosols over a twelve-month period were measured by real-time polymerase chain reaction (RT-PCR). A combined Gaussian plum dispersion model and quantitative microbial risk assessment (QMRA) with Monte-Carlo simulation served as suitable explanatory tools to estimate the risk of acquiring gastrointestinal illness (GI) due to exposure to air containing Rotavirus (RoV) and Norovirus (NoV) bioaerosols. Additionally, DALY metric was applied to quantify the disability and mortality for workers and residents. RoV and NoV were detected above aeration tank with annual mean concentration 27 and 3099 (Viruses/m³.h), respectively. The medium calculated DALY indicator based on viral loads in contaminant source (RoV:5.76 × 10⁻² and NoV:1.23 × 10⁻¹) and estimated in different distances away (300–1000 m) (RoV:2.87 × 10⁻²- 2.75 × 10⁻² and NoV:1.14 × 10⁻¹-1.13 × 10⁻¹) were markedly higher than the threshold values recommended by US EPA (10⁻⁴ DALY pppy) and WHO (10⁻⁶ DALY pppy). The sensitivity analysis highlighted dose exposure and disease burden per case (DBPC) as two most influential factors for both workers and residents following exposure to two pathogens of concern. Due to high resistance and high concentration in the environment, the presence of RoV and NoV can intensify the consequences of diarrhea especially for children under five years of age; A comprehensible and transparent presentation of DALYs and QMRA can help decision makers and responsibilities to justify the priorities of exposure to wastewater in comparison with other risks of daily life.
Mostrar más [+] Menos [-]Bioaccumulation of some trace elements in tropical mangrove plants and snails (Can Gio, Vietnam) Texto completo
2019
Thanh-Nho, Nguyen | Marchand, Cyril | Strady, Emilie | Huu-Phat, Nguyen | Nhu-Trang, Tran-Thi
Mangrove sediments can store high amount of pollutants that can be more or less bioavailable depending on environmental conditions. When in available forms, these elements can be subject to an uptake by mangrove biota, and can thus become a problem for human health. The main objective of this study was to assess the distribution of some trace elements (Fe, Mn, Co, Ni, Cr, As, and Cu) in tissues of different plants and snails in a tropical mangrove (Can Gio mangrove Biosphere Reserve) developing downstream a megacity (Ho Chi Minh City, Vietnam). In addition, we were interested in the relationships between mangrove habitats, sediment quality and bioaccumulation in the different tissues studied. Roots and leaves of main mangrove trees (Avicennia alba and Rhizophora apiculata) were collected, as well as different snail species: Chicoreus capucinus, Littoraria melanostoma, Cerithidea obtusa, Nerita articulata. Trace elements concentrations in the different tissues were determined by ICP-MS after digestion with concentrated HNO₃ and H₂O₂. Concentrations differed between stands and tissues, showing the influence of sediment geochemistry, species specific requirements, and eventually adaptation abilities. Regarding plants tissues, the formation of iron plaque on roots may play a key role in preventing Fe and As translocation to the aerial parts of the mangrove trees. Mn presented higher concentrations in the leaves than in the roots, possibly because of physiological requirements. Non-essential elements (Ni, Cr and Co) showed low bioconcentration factors (BCF) in both roots and leaves, probably resulting from their low bioavailability in sediments. Regarding snails, essential elements (Fe, Mn, and Cu) were the dominant ones in their tissues. Most of snails were “macroconcentrators” for Cu, with BCF values reaching up to 42.8 for Cerithidea obtusa. We suggest that high quantity of As in all snails may result from its high bioavailability and from their ability to metabolize As.
Mostrar más [+] Menos [-]Metagenomics sheds light on the metabolic repertoire of oil-biodegrading microbes of the South Atlantic Ocean Texto completo
2019
Appolinario, Luciana R. | Tschoeke, Diogo | Paixão, Raphael V.S. | Venas, Tainá | Calegario, Gabriela | Leomil, Luciana | Silva, Bruno S. | Thompson, Cristiane C. | Thompson, Fabiano L.
Unplanned oil spills during offshore oil production are a serious problem for the industry and the marine environment. Here we assess the biodegradation potential of marine microorganisms from three water depths in the Campos Basin (South Atlantic Ocean): (i) 5 m (surface), (ii) ∼80 m (chlorophyll maximum layer), and (iii) ∼1200 m (near the bottom). After incubating seawater samples with or without crude oil for 52 days, we used metagenomics and classic microbiology techniques to analyze microbial abundance and diversity, and measured physical-chemical parameters to better understand biodegradation processes. We observed increased microbial abundance and concomitant decreases in dissolved oxygen and hydrocarbon concentrations, indicating oil biodegradation in the three water depths treatments within approximately 27 days. An increase in metagenomic sequences of oil-degrading archaea, fungi, and bacteria (Alcanivorax, Alteromonas, Colwellia, Marinobacter, and Pseudomonas) accompanied by a significant increase in metagenomic sequences involved in the degradation of aromatic compounds indicate that crude oil promotes the growth of microorganisms with oil degradation potential. The abundance of genes involved in biodegrading benzene, toluene, ethylbenzene, xylene, alkanes, and poly-aromatic hydrocarbons peaked approximately 3 days after oil addition. All 12 novel metagenome-assembled genomes contained genes involved in hydrocarbon degradation, indicating the oil-degrading potential of planktonic microbes in the Campos Basin.
Mostrar más [+] Menos [-]Sedimentary records of polychlorinated biphenyls in the East China Marginal Seas and Great Lakes: Significance of recent rise of emissions in China and environmental implications Texto completo
2019
Wu, Zilan | Lin, Tian | Li, An | Zhou, Shanshan | He, Huan | Guo, Jiehong | Hu, Limin | Li, Yuanyuan | Guo, Zhigang
Polychlorinated biphenyls (PCBs) in dated sediment cores from the East China Marginal Seas (ECMSs) and the chronology of the net fluxes to sediments were analyzed. The accumulation of 27 PCBs (ΣPCBs) in the ECMS sediments is about 5–26 ng cm⁻², with the net depositional fluxes of ΣPCBs 10 times lower than those observed in the Great Lakes during the 1960s–1970s. Exponential increases in PCB deposition to the ECMS sediments since the 1990s were observed, which closely follows the fast growth of PCB emissions from industrial thermal processes and e-waste related sources in China. Recent PCB fluxes to the study sites in the ECMSs and the Great Lakes are comparable; the former surged forward with a rising tendency, while the latter showed continued decline after the late 1970s. Due to the different PCB application histories and sources between the two regions, the ECMS sediments may remain as a net sink for land-derived PCBs, while sediments in the Great Lake may have been acting as a secondary source releasing PCBs to water. A higher proportion of trichlorobiphenyls in the ECMS sediments than the Great Lakes was indicated, which may imply the net transport of atmospheric PCBs from China.
Mostrar más [+] Menos [-]