Refinar búsqueda
Resultados 521-530 de 7,292
Inhibition of methylmercury uptake by freshwater phytoplankton in presence of algae-derived organic matter Texto completo
2022
Li, Zhike | Chi, Jie | Shao, Bo | Wu, Zhengyu | He, Wei | Liu, Yiwen | Sun, Peizhe | Lin, Huiming | Wang, Xuejun | Zhao, Yingxin | Chen, Long | Tong, Yindong
As the first step of methylmercury (MeHg) entry into the aquatic food webs, MeHg uptake by phytoplankton is crucial in determining the final human MeHg exposure risks. MeHg availability to plankton is regulated by dissolved organic matter (DOM) in the water, while the extent of the impacts can vary largely based on the sources of DOM. Here, we investigated impacts of DOM sources on MeHg bioconcentration by three freshwater phytoplankton species (i.e. S. quadricauda, Chlorella sp., Microcystis elabens) in the laboratory system. We found that algae-derived DOM would prohibited the cellular MeHg bioconcentration by a percent up to 77–93%, while the soil-derived DOM didn't show similar inhibition effects. DOM characterization by the excitation‒emission matrices, Fourier transform infrared spectrum, ultra‒high performance liquid chromatography‒tandem quadrupole time of flight mass spectrometry shown that the molecular size of S-containing compound, rather than thiol concentration, has played a crucial role in regulating the MeHg uptake by phytoplankton. Climate change and increasing nutrient loadings from human activities may affect plankton growth in the freshwater, ultimately changing the DOM compositions. Impacts of these changes on cellular MeHg uptakes by phytoplankton should be emphasized when exploring the aquatic Hg cycling and evaluating their risks to human beings and wild life.
Mostrar más [+] Menos [-]Distribution, accumulation, migration and risk assessment of trace elements in peanut-soil system Texto completo
2022
Yang, Bolei | Shan, Jihao | Xing, Fuguo | Dai, Xiaodong | Wang, Gang | Ma, Junning | Adegoke, Tosin Victor | Zhang, Xinyou | Yu, Qiang | Yu, Xiaohua
Trace elements contamination is mainly originated from industrial emission, sewage irrigation and pesticides, and poses a threat to the environment and human health. This study analyzed the trace element pollutants in peanut-soil systems, the enrichment and translocation capacity of peanut to trace elements, and the potential risk of trace elements to environment and human health. The results indicated that Cd and Ni in peanut kernels exceeded the standard limits in 2019, and the exceeding rate were 9% and 31%, respectively. Cd in 8% of soil samples and As in 98% of soil samples exceeded the risk screening value of trace elements. The concentration of trace elements in peanuts was related to varieties and planting regions. In addition, there was a significant positive correlation between the concentration of Cd in peanut kernel and its concentration in soil. Compared with other trace elements, peanut kernels had stronger ability to enrich and transport Cd, Cu, and Zn, the BFs were 0.45, 0.51 and 0.47, respectively. After oil extraction, trace elements were mainly concentrated in peanut meal, and only 0.25% of Cd was in oil. The RI of trace elements was less than 150, indicating that the study area was under low degree of ecological risk. However, As and Cd might pose moderate risk to environment. Trace elements in soil and peanut could not cause non-carcinogenic and carcinogenic risks to human, but the HI and CR value of As (0.59 and 9.54 × 10⁻⁵) in soil and CRᵢₙg value of Cd (9.25 × 10⁻⁷) in peanut were close to the critical value. We conclude that Cd pollution in peanut kernel, and Cd and As pollution in soil should be monitored to enter into the food chain or environment and to avoid the possible health hazards and environment risks.
Mostrar más [+] Menos [-]Synergetic removal of thallium and antimony from wastewater with jacobsite-biochar-persulfate system Texto completo
2022
Liu, Juan | Wei, Xudong | Ren, Shixing | Qi, Jianying | Cao, Jielong | Wang, Jin | Wan, Yuebing | Liu, Yanyi | Zhao, Min | Wang, Liang | Xiao, Tangfu
Both of thallium (Tl) and antimony (Sb) are toxic elements in the natural environment. Emerging Tl and Sb pollution in water has gradually gained public concerns globally. However, limited technologies are available for co-removal of Tl and Sb from wastewater. Herein, an novel system was successfully fabricated to enhance the synergetic removal of both Tl and Sb in wastewater. In this study, MnFe₂O₄-biochar composite (MFBC) facilely synthesized by a one-pot hydrothermal method was used as adsorbent and persulfate (PS) activator for simultaneously removing Tl and Sb from wastewater. The optimal reaction conditions for best removal efficiency of Tl and Sb simultaneously were obtained by using the response surface design combined with Box-Behnken Design (BBD) model. Results unveiled that the average removal rates of Tl and Sb can achieve 98.33% and 89.14%, respectively under the optimal reaction conditions. Electron Spin Resonance (ESR), and radical quenching experiments showed that OH• and SO₄•– play a critical role in the removal of Tl–Sb compound pollution. Via using different characterization, it is revealed that the mechanism of removing Tl–Sb containing wastewater by MFBC-1.4/PS system is oxidation, adsorption, complexation and ion exchange. All these results indicate that MFBC-1.4/PS technology is prospective in highly effective removal of Tl and Sb from wastewater simultaneously.
Mostrar más [+] Menos [-]Glyphosate and glufosinate-ammonium in aquaculture ponds and aquatic products: Occurrence and health risk assessment Texto completo
2022
Yan, Biao | Lei, Lei | Chen, Xiangping | Men, Jun | Sun, Yumiao | Guo, Yongyong | Yang, Lihua | Wang, Qidong | Han, Jian | Zhou, Bingsheng
As the two most commonly used organophosphorus herbicides, glyphosate (Gly) and glufosinate-ammonium (Glu) have unique properties for weed control and algae removal in aquaculture. However, the occurrences and health risks of Gly and Glu in aquaculture ponds are rare known. This study aimed to investigate the occurrences of Gly, AMPA (primary metabolity of Gly) and Glu in surface water, sediment and aquatic products from the grass carp (ctenopharyngodon idella), crayfish (procambarus clarkii) and crab (eriocheir sinensis) ponds around Lake Honghu, the largest freshwater lake in Hubei province, China where aquaculture has become the local pillar industry. Three age groups (children, young adults, middle-aged and elderly) exposure to these compounds through edible aquatic products (muscle) consumption were also assessed by target hazard quotient (THQ) method. The results indicated that Gly, AMPA and Glu were widely occurred in surface water, sediment and organisms in the fish, crayfish and crab ponds. AMPA was more likely to accumulate in the intestine of aquatic products than Gly and Glu. According to the total THQ value (1.04>1), muscle consumption of grass carp may pose potential risk to children.
Mostrar más [+] Menos [-]Ecotoxicological effects of plastics on plants, soil fauna and microorganisms: A meta-analysis Texto completo
2022
Huo, Yuxin | Dijkstra, Feike A. | Possell, Malcolm | Singh, Balwant
The interactions of plastics and soil organisms are complex and inconsistent observations on the effects of plastics on soil organisms have been made in published studies. In this study, we assessed the effects of plastic exposure on plants, fauna and microbial communities, with a meta-analysis. Using a total of 2936 observations from 140 publications, we analysed how responses in plants, soil fauna and microorganisms depended on the plastic concentration, size, type, species and exposure media. We found that overall plastics caused substantial detrimental effects to plants and fauna, but less so to microbial diversity and richness. Plastic concentration was one of the most important factors explaining variations in plant and faunal responses. Larger plastics (>1 μm) caused unfavourable changes to plant growth, germination and oxidative stress, while nanoplastics (NPs; ≤ 1 μm) only increased oxidative stress. On the contrary, there was a clear trend showing that small plastics adversely affected fauna reproduction, survival and locomotion than large plastics. Plant responses were indifferent to plastic type, with most studies conducted using polyethylene (PE) and polystyrene (PS) plastics, but soil fauna were frequently more sensitive to PS than to PE exposure. Plant species played a vital role in some parameters, with the effects of plastics being considerably greater on vegetable plants than on cereal plants.
Mostrar más [+] Menos [-]Microbial engineering for the production and application of phytases to the treatment of the toxic pollutants: A review Texto completo
2022
Zhou, Yuwen | Anoopkumar, A.N. | Tarafdar, Ayon | Madhavan, Aravind | Binoop, Mohan | Lakshmi, Nair M. | B, Arun K. | Sindhu, Raveendran | Binod, Parameswaran | Sirohi, Ranjna | Pandey, Ashok | Zhang, Zengqiang | Awasthi, Mukesh Kumar
Phytases are a group of digestive enzymes which are commonly used as feed enzymes. These enzymes are used exogenously in the feeds of monogastric animals thereby it improves the digestibility of phosphorous and thus reduces the negative impact of inorganic P excretion on the environment. Even though these enzymes are widely distributed in many life forms, microorganisms are the most preferred and potential source of phytase. Despite the extensive availability of the phytase-producing microbial consortia, only a few microorganisms have been known to be exploited at industrial level. The high costs of the enzyme along with the incapability to survive high temperatures followed by the poor storage stability are noted to be the bottleneck in the commercialization of enzymes. For this reason, besides the conventional fermentation approaches, the applicability of cloning, expression studies and genetic engineering has been implemented for the past few years to accomplish the abovesaid benefits. The site-directed mutagenesis as well as knocking out have also validated their prominent role in microbe-based phytase production with enhanced levels. The present review provides detailed information on recent insights on the modification of phytases through heterologous expression and protein engineering to make thermostable and protease-resistant phytases.
Mostrar más [+] Menos [-]Comprehensive analyses of agrochemicals affecting aquatic ecosystems: A case study of Odonata communities and macrophytes in Saga Plain, northern Kyushu, Japan Texto completo
2022
Tazunoki, Yuhei | Tokuda, Makoto | Sakuma, Ayumi | Nishimuta, Kou | Oba, Yutaro | Kadokami, Kiwao | Miyawaki, Takashi | Ikegami, Makihiko | Ueno, Daisuke
The negative influence of agrochemicals (pesticides: insecticide, fungicide, and herbicide) on biodiversity is a major ecological concern. In recent decades, many insect species are reported to have rapidly declined worldwide, and pesticides, including neonicotinoids and fipronil, are suspected to be partially responsible. In Japan, application of systemic insecticides to nursery boxes in rice paddies is considered to have caused rapid declines in Sympetrum (Odonata: Libellulidae) and other dragonfly and damselfly populations since the 1990s. In addition to the direct lethal effects of pesticides, agrochemicals indirectly affect Odonata populations through reductions in macrophytes, which provide a habitat, and prey organisms. Due to technical restrictions, most previous studies first selected target chemicals and then analyzed their influence on focal organisms at various levels, from the laboratory to the field. However, in natural and agricultural environments, various chemicals co-occur and can act synergistically. Under such circumstances, targeted analyses might lead to spurious correlations between a target chemical and the abundance of organisms. To address such problems, in this study we adopted a novel technique, “Comprehensive Target Analysis with an Automated Identification and Quantification System (CTA-AIQS)” to detect wide range of agrochemicals in water environment. The relationships between a wide range of pesticides and lentic Odonata communities were surveyed in agricultural and non-agricultural areas in Saga Plain, Kyushu, Japan. We detected significant negative relationships between several insecticides, i.e., acephate, clothianidin, dinotefuran, flubendiamide, pymetrozine, and thiametoxam (marginal for benthic odonates) and the abundance of lentic Epiprocta and benthic Odonates. In contrast, the herbicides we detected were not significantly related to the abundance of aquatic macrophytes, suggesting a lower impact of herbicides on aquatic vegetation at the field level. These results highlight the need for further assessments of the influence of non-neonicotinoid insecticides on aquatic organisms.
Mostrar más [+] Menos [-]Impact of the COVID-19 lockdown on the chemical composition and sources of urban PM2.5 Texto completo
2022
Jeong, Cheol-Heon | Yousif, Meguel | Evans, Greg J.
The lockdown measures caused by the COVID-19 pandemic substantially affected air quality in many cities through reduced emissions from a variety of sources, including traffic. The change in PM₂.₅ and its chemical composition in downtown Toronto, Canada, including organic/inorganic composition and trace metals, were examined by comparing with a pre-lockdown period and respective periods in the three previous years. During the COVID-19 lockdown, the average traffic volume reduced by 58%, whereas PM₂.₅ only decreased by 4% relative to the baselines. Major chemical components of PM₂.₅, such as organic aerosol and ammonium nitrate, showed significant seasonal changes between pre- and lockdown periods. The changes in local and regional PM₂.₅ sources were assessed using hourly chemical composition measurements of PM₂.₅. Major regional and secondary PM₂.₅ sources exhibited no clear reductions during the lockdown period compared to pre-lockdown and the previous years. However, cooking emissions substantially dropped by approximately 61% due to the restrictions imposed on local businesses (i.e., restaurants) during the lockdown, and then gradually increased throughout the recovery periods. The reduction in non-tailpipe emissions, characterized by road dust and brake/tire dust, ranged from 37% to 61%, consistent with the changes in traffic volume and meteorology across seasons in 2020. Tailpipe emissions dropped by approximately 54% and exhibited even larger reductions during morning rush hours. The reduction of tailpipe emissions was statistically associated with the reduced number of trucks, highlighting that a small fraction of trucks contributes disproportionally to tailpipe emissions. This study provides insight into the potential for local benefits to arise from traffic intervention in traffic-dominated urban areas and supports the development of targeted strategies and regulations to effectively reduce local air pollution.
Mostrar más [+] Menos [-]Phytotoxic effects of plastic pollution in crops: what is the size of the problem? Texto completo
2022
Hartmann, Gustavo Führ | Ricachenevsky, Felipe Klein | Silveira, Neidiquele Maria | Pita-Barbosa, Alice
Plastic pollution is one of the most impactful human interferences in our planet. Fragmentation of plastic leads to nano- and microplastics (NP/MP) formation, which accumulate in agricultural lands, representing an increasing risk for crop production and food safety. It has been shown that MP promote damage in plant tissues by several direct and indirect ways, and that NP can enter the tissues/cells and accumulate in edible organs. Investigation of the phytotoxic effects of NP/MP in plants started only in 2016, with most of the studies performed with crops. Since contradictory results are often observed, it is important to review the literature in order to identify robust effects and their possible mechanisms. In this review, we discuss the potential of NP/MP in damaging crop species, with focus on the physiological changes described in the literature. We also performed scientometrics analyses on research papers in this field during 2016–2021, to reveal the research situation of phytotoxic effects of plastic pollution in crops. Our review is as a starting point to help identify gaps and future directions in this important, emerging field.
Mostrar más [+] Menos [-]Transcriptome analysis provides new insight into the distribution and transport of selenium and its associated metals in selenium-rich rice Texto completo
2022
Jiao, Linshu | Zhang, Liuquan | Zhang, Yongzhu | Wang, Ran | Lu, Baiyi | Liu, Xianjin
Selenium is an essential trace element for humans and obtained from diary diets. The consumption of selenium-rich agricultural food is an efficient way to obtain selenium, but the quality and safety of selenium-rich agro-food are always affected by their associated heavy metals, even poses a potential threaten to human health. In this research, a sampling survey of heavy metals contents in selenium-rich rice was conducted, 182 sets of selenium-rich rice samples were collected from five selenium-rich rice-producing areas of China, and the accumulation of selenium and cadmium were found to be associated in rice and soil. Subsequently, a pot experiment was performed in the greenhouse via treating the soil samples with 12 different concentrations of selenium and heavy metals, and the contents of selenium and cadmium in rice grain were confirmed to be significantly associated. Moreover, transcriptome analysis revealed that the up-regulation of transporter-coding may promote the absorption of selenium and cadmium. The expression of antioxidant-coding genes and cadmium chelator transporter coding-genes was up-regulated to reduce the toxicity of cadmium. Meanwhile, the up-regulation of key genes of the ascorbic acid-glutathione metabolic pathway were responsible for the association between selenium and cadmium in Se-rich rice. Our work suggested the correlation between selenium and cadmium accumulation in selenium-rich rice, clarified their accumulation mechanism, provides a direction for the scientific production of selenium-rich agro-foods.
Mostrar más [+] Menos [-]