Refinar búsqueda
Resultados 571-580 de 4,896
Species-specific transcriptomic responses in Daphnia magna exposed to a bio-plastic production intermediate
2019
Swart, Elmer | de Boer, Tjalf E. | Chen, Guangquan | Vooijs, Riet | van Gestel, Cornelis A.M. | Straalen, N. M. van | Roelofs, Dick
Hydroxymethylfurfural (HMF) is a plant-based chemical building block that could potentially substitute petroleum-based equivalents, yet ecotoxicological data of this compound is currently limited. In this study, the effects of HMF on the reproduction and survival of Daphnia magna were assessed through validated ecotoxicological tests. The mechanism of toxicity was determined by analysis of transcriptomic responses induced by exposure to different concentrations of HMF using RNA sequencing. HMF exerted toxicity to D. magna with an EC₅₀ for effects on reproduction of 17.2 mg/l. HMF exposure affected molecular pathways including sugar and polysaccharide metabolism, lipid metabolism, general stress metabolism and red blood cell metabolism, although most molecular pathways affected by HMF exposure were dose specific. Hemoglobin genes, however, responded in a sensitive and dose-related manner. No induction of genes involved in the xenobiotic metabolism or oxidative stress metabolism pathway could be observed, which contrasted earlier observations on transcriptional responses of the terrestrial model Folsomia candida exposed to the same compound in a similar dose. We found 4189 orthologue genes between D. magna and F. candida, yet only twenty-one genes of those orthologues were co-regulated in both species. The contrasting transcriptional responses to the same compound exposed at a similar dose between D. magna and F. candida indicates limited overlap in stress responses among soil and aquatic invertebrates. The dose-related expression of hemoglobin provides further support for using hemoglobin expression as a biomarker for general stress responses in daphnids.
Mostrar más [+] Menos [-]Cultivation of C4 perennial energy grasses on heavy metal contaminated arable land: Impact on soil, biomass, and photosynthetic traits
2019
Rusinowski, S. | Krzyżak, J. | Sitko, K. | Kalaji, H.M. | Jensen, E. | Pogrzeba, M.
The objective of this study was to evaluate the potential of three C4 perennial grasses (Miscanthus x giganteus, Panicum virgatum and Spartina pectinata) for biomass production on arable land unsuitable for food crop cultivation due to Pb, Cd and Zn contamination. We assessed soil properties, biomass yield, metal concentrations, and the photosynthetic performance of each species. Physico-chemical and elemental analyses were performed on soil samples before plantation establishment (2014) and after three years of cultivation (2016), when leaf area index, plant height, yield and heavy metal content of biomass were also determined. Physiological measurements (gas exchange, pigment content, chlorophyll a fluorescence) were recorded monthly between June and September on mature plants in 2016. Cultivation of investigated plants resulted in increased pH, nitrogen, and organic matter (OM) content in soil, although OM increase (13%) was significant only for S. pectinata plots. During the most productive months, maximal quantum yield values of primary photochemistry (Fv/Fm) and gas exchange parameter values reflected literature data of those plants grown on uncontaminated sites. Biomass yields of M. x giganteus (15.0 ± 0.4 t d.m. ha−1) and S. pectinata (12.6 ± 1.2 t d.m. ha−1) were also equivalent to data published from uncontaminated land. P. virgatum performed poorly (4.1 ± 0.4 t d.m. ha−1), probably due to unfavourable climatic conditions, although metal uptake in this species was the highest (3.6 times that of M. x giganteus for Pb). Yield and physiological measurements indicated that M. x giganteus and S. pectinata were unaffected by the levels of contamination and therefore offer alternatives for areas where food production is prohibited. The broad cultivatable latitudinal range of these species suggests these results are widely relevant for development of the bioeconomy. We recommend multi-location trials under diverse contaminant and environmental regimes to determine the full potential of these species.
Mostrar más [+] Menos [-]A review of the factors that influence pesticide residues in pollen and nectar: Future research requirements for optimising the estimation of pollinator exposure
2019
Gierer, Fiona | Vaughan, Sarah | Slater, Mark | Thompson, Helen M. | Elmore, J Stephen | Girling, Robbie D.
In recent years, the impact of Plant Protection Products (PPPs) on insect pollinator decline has stimulated significant amounts of research, as well as political and public interest. PPP residues have been found in various bee-related matrices, resulting in governmental bodies worldwide releasing guidance documents on methods for the assessment of the overall risk of PPPs to different bee species. An essential part of these risk assessments are PPP residues found in pollen and nectar, as they represent a key route of exposure. However, PPP residue values in these matrices exhibit large variations and are not available for many PPPs and crop species combinations, which results in inaccurate estimations and uncertainties in risk evaluation. Additionally, residue studies on pollen and nectar are expensive and practically challenging. An extrapolation between different cropping scenarios and PPPs is not yet justified, as the behaviour of PPPs in pollen and nectar is poorly understood. Therefore, this review aims to contribute to a better knowledge and understanding of the fate of PPP residues in pollen and nectar and to outline knowledge gaps and future research needs. The literature suggests that four primary factors, the crop type, the application method, the physicochemical properties of a compound and the environmental conditions have the greatest influence on PPP residues in pollen and nectar. However, these factors consist of many sub-factors and initial effects may be disguised by different sampling methodologies, impeding their exact characterisation. Moreover, knowledge about these factors is ambiguous and restricted to a few compounds and plant species. We propose that future research should concentrate on identifying relationships and common features amongst various PPP applications and crops, as well as an overall quantification of the described parameters; in order to enable a reliable estimation of PPP residues in pollen, nectar and other bee matrices.
Mostrar más [+] Menos [-]Microplastics FTIR characterisation and distribution in the water column and digestive tracts of small pelagic fish in the Gulf of Lions
2019
Lefebvre, Charlotte | Saraux, Claire | Heitz, Olivier | Nowaczyk, Antoine | Bonnet, Delphine
This study aims at quantifying and characterising microplastics (MP) distribution in the water column of the NW Mediterranean Sea as well as MP ingestion by the 2 main planktivorous fish of the area, sardine and anchovy. Debris of similar sizes were found in all water column samples and in all but 2 fish guts (out of 169). MP were found in 93% of water column samples with an average concentration of 0.23 ± 0.20 MP·m−3, but in only 12% of sardines (0.20 ± 0.69 MP·ind−1) and 11% of anchovies (0.11 ± 0.31 MP·ind−1). Fibres were the only shape of MP encountered and polyethylene terephthalate was the main polymer identified in water columns (61%), sardines (71%) and anchovies (89%). This study confirms the ubiquity of MP in the Mediterranean Sea and imparts low occurrence in fish digestive tracts.
Mostrar más [+] Menos [-]Assessment of the metal contamination evolution in the Loire estuary using Cu and Zn stable isotopes and geochemical data in sediments
2019
Ferreira Araujo, Daniel | Ponzevera, Emmanuel | Briant, Nicolas | Knoery, Joel | Sireau, Teddy | Mojtahid, Meryem | Metzger, Edouard | Brach-papa, Christophe
In this work, a multi-elemental approach combining Cu and Zn stable isotopes is used to assess the metal contamination evolution in the Loire estuary bulk sediments. Elemental geochemical data indicate an increase of metal concentrations from the beginning of the industrial period peaking in the 1990s, followed by an attenuation of metal contamination inputs to the estuary. Zinc isotope compositions suggest a binary mixing process between Zn derived from terrigenous material and multi-urban anthropogenic sources. Copper isotope systematics indicate a single natural dominant source represented by weathered silicate particles from soils and rocks. This work demonstrates the applicability of Zn isotopes to identify anthropogenic Zn sources in coastal systems, even under a low to moderate degree of contamination. Further studies are required to constrain Cu sources and to elucidate possible effects of grain-size and mineralogy in the Cu isotope composition of sediment in the Loire estuary.
Mostrar más [+] Menos [-]Novel porous magnetic nanospheres functionalized by β-cyclodextrin polymer and its application in organic pollutants from aqueous solution
2019
Liu, Desheng | Huang, Zheng | Li, Minna | Sun, Ping | Yu, Ting | Zhou, Lincheng
Magnetic β-cyclodextrin (β-CD) porous polymer nanospheres (P-MCD) was fabricated by one-pot solvent thermal method using β-CD immobilized Fe3O4 magnetic nanoparticles with tetrafluoroterephthalonitrile as the monomer. Compared with the β-CD polymerization method reported in the literature,_ENREF_1 the synthetic route is effective and simple, thereby overcoming the harsh conditions that require nitrogen protection and always maintain anhydrous and oxygen-free. Moreover, the immobilization of β-CD on magnetic nanoparticles is combined with the cross-linking polymerization of the cross-linker, leading to a good synergistic effect on the removal of contaminants. Meanwhile, the dispersibility of the magnetic carrier enhances the dispersion of the β-CD porous polymer in the aqueous phase, and improves the inclusion adsorption performance and the adsorption process. P-MCD exhibited superior adsorption capacity and fast kinetics to MB. The maximum adsorption capacity of MB for P-MCD was 305.8 mg g −1, which is more than β-CD modified Fe3O4 magnetic nanoparticles (Fe3O4@β-CD). Moreover, the material had a short equilibrium time (5 min) for MB, high recovery and good recyclability (the adsorption efficiency was still above 86% after five repeated uses).
Mostrar más [+] Menos [-]Environmentally relevant methylmercury exposure reduces the metabolic scope of a model songbird
2019
Gerson, Alexander R. | Cristol, Daniel A. | Seewagen, Chad L.
For most birds, energy efficiency and conservation are paramount to balancing the competing demands of self-maintenance, reproduction, and other demanding life history stages. Yet the ability to maximize energy output for behaviors like predator escape and migration is often also critical. Environmental perturbations that affect energy metabolism may therefore have important consequences for fitness and survival. Methylmercury (MeHg) is a global pollutant that has wide-ranging impacts on physiological systems, but its effects on the metabolism of birds and other vertebrates are poorly understood. We investigated dose-dependent effects of dietary MeHg on the body composition, basal and peak metabolic rates (BMR, PMR), and respiratory quotients (RQ) of zebra finches (Taeniopygia guttata). Dietary exposure levels (0.0, 0.1, or 0.6 ppm wet weight) were intended to reflect a range of mercury concentrations found in invertebrate prey of songbirds in areas contaminated by atmospheric deposition or point-source pollution. We found adiposity increased with MeHg exposure. BMR also increased with exposure while PMR decreased, together resulting in reduced metabolic scope in both MeHg-exposed treatments. There were differences in RQ among treatments that suggested a compromised ability of exposed birds to rapidly metabolize carbohydrates during exercise in a hop-hover wheel. The elevated BMR of exposed birds may have been due to energetic costs of depurating MeHg, whereas the reduced PMR could have been due to reduced oxygen carrying capacity and/or reduced glycolytic capacity. Our results suggest that environmentally relevant mercury exposure is capable of compromising the ability of songbirds to both budget and rapidly exert energy.
Mostrar más [+] Menos [-]Effects of polyethylene microplastics on the gut microbial community, reproduction and avoidance behaviors of the soil springtail, Folsomia candida
2019
Ju, Hui | Zhu, Dong | Qiao, Min
Microplastics (MPs) are an emerging contaminant and are confirmed to be ubiquitous in the environment. Adverse effects of MPs on aquatic organisms have been widely studied, whereas little research has focused on soil invertebrates. We exposed the soil springtail Folsomia candida to artificial soils contaminated with polyethylene MPs (<500 μm) for 28 d to explore the effects of MPs on avoidance, reproduction, and gut microbiota. Springtails exhibited avoidance behaviors at 0.5% and 1% MPs (w/w in dry soil), and the avoidance rate was 59% and 69%, respectively. Reproduction was inhibited when the concentration of MPs reached 0.1% and was reduced by 70.2% at the highest concentration of 1% MPs compared to control. The half-maximal effective concentration (EC₅₀) value based on reproduction for F. candida was 0.29% MPs. At concentrations of 0.5% dry weight in the soil, MPs significantly altered the microbial community and decreased bacterial diversity in the springtail gut. Specifically, the relative abundance of Wolbachia significantly decreased while the relative abundance of Bradyrhizobiaceae, Ensifer and Stenotrophomonas significantly increased. Our results demonstrated that MPs exerted a significant toxic effect on springtails and can change their gut microbial community. This can provide useful information for risk assessment of MPs in terrestrial ecosystems.
Mostrar más [+] Menos [-]Plasma concentrations of organohalogenated contaminants in white-tailed eagle nestlings – The role of age and diet
2019
Løseth, Mari Engvig | Briels, Nathalie | Eulaers, Igor | Nygård, Torgeir | Malarvannan, Govindan | Poma, Giulia | Covaci, Adrian | Herzke, Dorte | Bustnes, Jan Ove | Lepoint, Gilles | Jenssen, Bjørn Munro | Jaspers, Veerle L.B.
Concentrations of organohalogenated contaminants (OHCs) can show significant temporal and spatial variation in the environment and wildlife. Most of the variation is due to changes in use and production, but environmental and biological factors may also contribute to the variation. Nestlings of top predators are exposed to maternally transferred OHCs in the egg and through their dietary intake after hatching. The present study investigated spatial and temporal variation of OHCs and the role of age and diet on these variations in plasma of Norwegian white-tailed eagle (Haliaeetus albicilla) nestlings. The nestlings were sampled at two locations, Smøla and Steigen, in 2015 and 2016. The age of the nestlings was recorded (range: 44 – 87 days old) and stable carbon and nitrogen isotopes (δ¹³C and δ¹⁵N) were applied as dietary proxies for carbon source and trophic position, respectively. In total, 14 polychlorinated biphenyls (PCBs, range: 0.82 – 59.05 ng/mL), 7 organochlorinated pesticides (OCPs, range: 0.89 – 52.19 ng/mL), 5 polybrominated diphenyl ethers (PBDEs, range: 0.03 – 2.64 ng/mL) and 8 perfluoroalkyl substances (PFASs, range: 4.58 – 52.94 ng/mL) were quantified in plasma samples from each location and year. The OHC concentrations, age and dietary proxies displayed temporal and spatial variations. The age of the nestlings was indicated as the most important predictor for OHC variation as the models displayed significantly decreasing plasma concentrations of PCBs, OCPs, and PBDEs with increasing age, while concentrations of PFASs were significantly increasing with age. Together with age, the variations in PCB, OCP and PBDE concentrations were also explained by δ¹³C and indicated decreasing concentrations with a more marine diet. Our findings emphasise age and diet as important factors to consider when investigating variations in plasma OHC concentrations in nestlings.
Mostrar más [+] Menos [-]Removal of fine particulate matter (PM2.5) via atmospheric humidity caused by evapotranspiration
2019
Ryu, Jeongeun | Kim, Jeong Jae | Byeon, Hyeokjun | Go, Taesik | Lee, Sang Joon
Reduction of particulate matter (PM) has emerged as one of the most significant challenges in public health and environment protection worldwide. To address PM-related problems and effectively remove fine particulate matter (PM2.5), environmentalists proposed tree planting and afforestation as eco-friendly strategies. However, the PM removal effect of plants and its primary mechanism remains uncertain. In this study, we experimentally investigated the PM removal performance of five plant species in a closed chamber and the effects of relative humidity (RH) caused by plant evapotranspiration, as a governing parameter. On the basis of the PM removal test for various plant species, we selected Epipremnum aureum (Scindapsus) as a representative plant to identify the PM removal efficiency depending on evapotranspiration and particle type. Results showed that Scindapsus yielded a high PM removal efficiency for smoke type PM2.5 under active transpiration. We examined the correlation of PM removal and relative humidity (RH) and evaluated the increased effect of RH on PM2.5 removal by using a plant-inspired in vitro model. Based on the present results, the increase of RH due to evapotranspiration is crucial to the reduction of PM2.5 using plants.
Mostrar más [+] Menos [-]