Refinar búsqueda
Resultados 581-590 de 4,044
Light pollution reduces activity, food consumption and growth rates in a sandy beach invertebrate Texto completo
2016
Luarte, T. | Bonta, C.C. | Silva-Rodriguez, E.A. | Quijón, P.A. | Miranda, C. | Farias, A.A. | Duarte, C.
The continued growth of human activity and infrastructure has translated into a widespread increase in light pollution. Natural daylight and moonlight cycles play a fundamental role for many organisms and ecological processes, so an increase in light pollution may have profound effects on communities and ecosystem services. Studies assessing ecological light pollution (ELP) effects on sandy beach organisms have lagged behind the study of other sources of disturbance. Hence, we assessed the influence of this stressor on locomotor activity, foraging behavior, absorption efficiency and growth rate of adults of the talitrid amphipod Orchestoidea tuberculata. In the field, an artificial light system was assembled to assess the local influence of artificial light conditions on the amphipod's locomotor activity and use of food patches in comparison to natural (ambient) conditions. Meanwhile in the laboratory, two experimental chambers were set to assess amphipod locomotor activity, consumption rates, absorption efficiency and growth under artificial light in comparison to natural light-dark cycles. Our results indicate that artificial light have significantly adverse effects on the activity patterns and foraging behavior of the amphipods, resulting on reduced consumption and growth rates. Given the steady increase in artificial light pollution here and elsewhere, sandy beach communities could be negatively affected, with unexpected consequences for the whole ecosystem.
Mostrar más [+] Menos [-]PAH distributions in sediments in the oil sands monitoring area and western Lake Athabasca: Concentration, composition and diagnostic ratios Texto completo
2016
Evans, Marlene | Davies, Martin | Janzen, Kim | Muir, Derek | Hazewinkel, Rod | Kirk, Jane | de Boer, Dirk
Oil sands activities north of Fort McMurray, Alberta, have intensified in recent years with a concomitant debate as to their environmental impacts. The Regional Aquatics Monitoring Program and its successor, the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring (JOSM), are the primary aquatic programs monitoring this industry. Here we examine sediment data (collected by Ekman grabs) to investigate trends and sources of polycyclic aromatic hydrocarbons (PAHs), supplementing these data with sediment core studies. Total PAH (ΣPAH) concentrations were highest at Shipyard Lake (6038 ± 2679 ng/g) in the development center and lower at Isadore's Lake (1660 ± 777 ng/g) to the north; both lakes are in the Athabasca River Valley and lie below the developments. ΣPAH concentrations were lower (622–930 ng/g) in upland lakes (Kearl, McClelland) located further away from the developments. ΣPAH concentrations increased at Shipyard Lake (2001–2014) and the Ells River mouth (1998–2014) but decreased in nearshore areas at Kearl Lake (2001–2014) and a Muskeg River (2000–2014) site. Over the longer term, ΣPAH concentrations increased in Kearl (1934–2012) and Sharkbite (1928–2010) Lakes. Further (200 km) downstream in the Athabasca River delta, ΣPAH concentrations (1029 ± 671 ng/g) increased (1999–2014) when %sands were included in the regression model; however, 50 km to the east, concentrations declined (1926–2009) in Lake Athabasca. Ten diagnostic ratios based on anthracene, phenanthrene, fluoranthene, pyrene, benz[a]anthracene, chrysene, indeno[123-cd]pyrene, dibenz[a,h]anthracene, dibenzothiophene and retene were examined to infer spatial and temporal trends in PAH sources (e.g., combustion versus petrogenic) and weathering. There was some evidence of increasing contributions of unprocessed oil sands and bitumen dust to Shipyard, Sharkbite, and Isadore's Lakes and increased combustion sources in the Athabasca River delta. Some CCME interim sediment quality guidelines were exceeded, primarily in Shipyard Lake and near presumed natural bitumen sources.
Mostrar más [+] Menos [-]Polybrominated diphenyl ethers (PBDEs) and alternative brominated flame retardants (aBFRs) in sediments from four bays of the Yellow Sea, North China Texto completo
2016
Zhen, Xiaomei | Tang, Jianhui | Xie, Zhiyong | Wang, Runmei | Huang, Guopei | Zheng, Qian | Zhang, Kai | Sun, Yongge | Tian, Chongguo | Pan, Xiaohui | Li, Jun | Zhang, Gan
The distribution characteristics and potential sources of polybrominated diphenyl ethers (PBDEs) and alternative brominated flame retardants (aBFRs) were investigated in 54 surface sediment samples from four bays (Taozi Bay, Sishili Bay, Dalian Bay, and Jiaozhou Bay) of North China's Yellow Sea. Of the 54 samples studied, 51 were collected from within the four bays and 3 were from rivers emptying into Jiaozhou Bay. Decabromodiphenylethane (DBDPE) was the predominant flame retardant found, and concentration ranged from 0.16 to 39.7 ng g−1 dw and 1.13–49.9 ng g−1 dw in coastal and riverine sediments, respectively; these levels were followed by those of BDE 209, and its concentrations ranged from n.d. to 10.2 ng g−1 dw and 0.05–7.82 ng g−1 dw in coastal and riverine sediments, respectively. The levels of DBDPE exceeded those of decabromodiphenyl ether (BDE 209) in most of the samples in the study region, whereas the ratio of DBDPE/BDE 209 varied among the four bays. This is indicative of different usage patterns of brominated flame retardants (BFRs) and also different hydrodynamic conditions among these bay areas. The spatial distribution and composition profile analysis indicated that BFRs in Jiaozhou Bay and Dalian Bay were mainly from local sources, whereas transport from Laizhou Bay by coastal currents was the major source of BFRs in Taozi Bay and Sishili Bay. Both the ∑PBDEs and ∑aBFRs (sum of pentabromotoluene (PBT), 2,3-diphenylpropyl-2,4,6-tribromophenyl ether (DPTE), pentabromoethylbenzene (PBEB), and hexabromobenzene (HBB)) were at low concentrations in all the sediments. This is probably attributable to a combination of factors such as low regional usage of these products, atmospheric deposition patterns, coastal currents transportation patterns, and degradation processes for higher BDE congeners. This paper is the first study that has investigated the levels of DBDPE in the coastal sediments of China's Yellow Sea.
Mostrar más [+] Menos [-]Water quantity and quality response of a green roof to storm events: Experimental and monitoring observations Texto completo
2016
Carpenter, Corey M.G. | Todorov, Dimitar | Driscoll, Charles T. | Montesdeoca, Mario
Syracuse, New York is working under a court-ordered agreement to limit combined sewer overflows (CSO) to local surface waters. Green infrastructure technologies, including green roofs, are being implemented as part of a CSO abatement strategy and to develop co-benefits of diminished stormwater runoff, including decreased loading of contaminants to the wastewater system and surface waters. The objective of this study was to examine the quantity and quality of discharge associated with precipitation events over an annual cycle from a green roof in Syracuse, NY and to compare measurements from this monitoring program with results from a roof irrigation experiment. Wet deposition, roof drainage, and water quality were measured for 87 storm events during an approximately 12 month period over 2011–2012. Water and nutrient (total phosphorus, total nitrogen, and dissolved organic carbon) mass balances were conducted on an event basis to evaluate retention annually and during the growing and non-growing seasons. These results are compared with a hydrological manipulation experiment, which comprised of artificially watering of the roof. Loadings of nutrients were calculated for experimental and actual storms using the concentration of nutrients and the flow data of water discharging the roof. The green roof was effective in retaining precipitation quantity from storm events (mean percent retention 96.8%, SD = 2.7%, n = 87), although the relative fraction of water retained decreased with increases in the size of the event. There was no difference in water retention of the green roof for the growing and non-growing seasons. Drainage waters exhibited high concentration of nutrients during the warm temperature growing season, particularly total nitrogen and dissolved organic carbon. Overall, nutrient losses were low because of the strong retention of water. However, there was marked variation in the retention of nutrients by season due to variations in concentrations in roof runoff.
Mostrar más [+] Menos [-]Enhanced anaerobic dechlorination of polychlorinated biphenyl in sediments by bioanode stimulation Texto completo
2016
Yu, Hui | Feng, Chunhua | Liu, Xiaoping | Yi, Xiaoyun | Ren, Yuan | Wei, Chaohai
The application of a low-voltage electric field as an electron donor or acceptor to promote the bioremediation of chlorinated organic compounds represents a promising technology meeting the demand of developing an efficient and cost-effective strategy for in situ treatment of PCB-contaminated sediments. Here, we reported that bioanode stimulation with an anodic potential markedly enhanced dechlorination of 2,3,4,5-tetrachlorobiphenyl (PCB 61) contained in the sediment at an electronic waste recycling site of Qingyuan, Guangdong, China. The 110-day incubation of the bioanode with a potential poised at 0.2 V relative to saturated calomel electrode enabled 58% transformation of the total PCB 61 at the initial concentration of 100 μmol kg⁻¹, while only 23% was reduced in the open-circuit reference experiment. The introduction of acetate to the bioelectrochemical reactor (BER) further improved PCB 61 transformation to 82%. Analysis of the bacterial composition showed significant community shifts in response to variations in treatment. At phylum level, the bioanode stimulation resulted in substantially increased abundance of Actinobacteria, Bacteroidetes, and Chloroflexi either capable of PCB dechlorination, or detected in the PCB-contaminated environment. At genus level, the BER contained two types of microorganisms: electrochemically active bacteria (EAB) represented by Geobacter, Ignavibacterium, and Dysgonomonas, and dechlorinating bacteria including Hydrogenophaga, Alcanivorax, Sedimentibacter, Dehalogenimonas, Comamonas and Vibrio. These results suggest that the presence of EAB can promote the population of dechlorinating bacteria which are responsible for PCB 61 transformation.
Mostrar más [+] Menos [-]The impact of traffic-flow patterns on air quality in urban street canyons Texto completo
2016
Thaker, Prashant | Gokhale, Sharad
We investigated the effect of different urban traffic-flow patterns on pollutant dispersion in different winds in a real asymmetric street canyon. Free-flow traffic causes more turbulence in the canyon facilitating more dispersion and a reduction in pedestrian level concentration. The comparison of with and without a vehicle-induced-turbulence revealed that when winds were perpendicular, the free-flow traffic reduced the concentration by 73% on the windward side with a minor increase of 17% on the leeward side, whereas for parallel winds, it reduced the concentration by 51% and 29%. The congested-flow traffic increased the concentrations on the leeward side by 47% when winds were perpendicular posing a higher risk to health, whereas reduced it by 17–42% for parallel winds. The urban air quality and public health can, therefore, be improved by improving the traffic-flow patterns in street canyons as vehicle-induced turbulence has been shown to contribute significantly to dispersion.
Mostrar más [+] Menos [-]Body burden of pesticides and wastewater-derived pollutants on freshwater invertebrates: Method development and application in the Danube River Texto completo
2016
Inostroza, Pedro A. | Wicht, Anna-Jorina | Huber, Thomas | Nagy, Claudia | Brack, Werner | Krauss, Martin
While environmental risk assessment is typically based on toxicant concentrations in water and/or sediment, awareness is increasing that internal concentrations or body burdens are the key to understand adverse effects in organisms. In order to link environmental micropollutants as causes of observed effects, there is an increasing demand for methods to analyse these chemicals in organisms. Here, a multi-target screening method based on pulverised liquid extraction (PuLE) and a modified QuEChERS approach with an additional hexane phase was developed. It is capable to extract and quantify organic micropollutants of diverse chemical classes in freshwater invertebrates. The method was tested on gammarids from the Danube River (within the Joint Danube Survey 3) and target compounds were analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Furthermore, a non-target screening using high resolution-tandem mass spectrometry (LC-HRMS/MS) was conducted. A total of 17 pollutants were detected and/or quantified in gammarids at low concentrations. Pesticide concentrations ranged from 0.1 to 6.52 ng g−1 (wet weight), those of wastewater-derived pollutants from 0.1 to 2.83 ng g−1 (wet weight). The presence of wastewater-derived pollutants was prominent at all spots sampled. Using non-target screening, we could successfully identify several chlorinated compounds. These results demonstrate for the first time the presence of pesticides and wastewater-derived pollutants in invertebrates of the Danube River.
Mostrar más [+] Menos [-]No enhancement of cyanobacterial bloom biomass decomposition by sediment microbial fuel cell (SMFC) at different temperatures Texto completo
2016
Ye, Tian-ran | Song, Na | Chen, Mo | Yan, Zai-sheng | Jiang, He-Long
The sediment microbial fuel cell (SMFC) has potential application to control the degradation of decayed cyanobacterial bloom biomass (CBB) in sediment in eutrophic lakes. In this study, temperatures from 4 to 35 °C were investigated herein as the major impact on SMFC performance in CBB-amended sediment. Under low temperature conditions, the SMFC could still operate, and produced a maximum power density of 4.09 mW m−2 at 4 °C. Coupled with the high substrate utilization, high output voltage was generated in SMFCs at high temperatures. The application of SMFC affected the anaerobic fermentation progress and was detrimental to the growth of methanogens. At the same time, organic matter of sediments in SMFC became more humified. As a result, the fermentation of CBB was not accelerated with the SMFC application, and the removal efficiency of the total organic matter was inhibited by 5% compared to the control. Thus, SMFC could operate well year round in sediments with a temperature ranging from 4 to 35 °C, and also exhibit practical value by inhibiting quick CBB decomposition in sediments in summer against the pollution of algae organic matter.
Mostrar más [+] Menos [-]A global perspective on the use, occurrence, fate and effects of anti-diabetic drug metformin in natural and engineered ecosystems Texto completo
2016
Briones, Rowena M. | Sarmah, Ajit K. | Padhye, Lokesh P.
Metformin is the most commonly used anti-diabetic drug in the world. When consumed, this unmetabolised pharmaceutical compound is excreted by the body and eventually enters the environment through a variety of pathways. Based on its high consumption and excretion rates, high concentrations of metformin have been detected in influents of wastewater treatment plants. Metformin and its transformation product, guanylurea, are also expected to be present in other aquatic environments based on their physico-chemical properties. Not surprisingly, guanylurea has also been detected in surface water, groundwater, and drinking water. Available information on ecotoxicological effects of metformin suggests that metformin is a potential endocrine disruptor and thus further emphasising the threat this drug could pose to our environment. This review provides a comprehensive overview of metformin and critically discusses available literature data with respect to its global use/demand, occurrence, fate and ecotoxicity in treatment facilities equipped with conventional and advanced treatment technologies, and its degradation/removal mechanisms. Final section highlights the existing knowledge gaps regarding its ultimate fate under the natural and engineered ecosystems and identifies some important research areas requiring urgent attention from regulatory makers and scientific community.
Mostrar más [+] Menos [-]Comparisons of discrete and integrative sampling accuracy in estimating pulsed aquatic exposures Texto completo
2016
Morrison, Shane A. | Luttbeg, Barney | Belden, Jason B.
Most current-use pesticides have short half-lives in the water column and thus the most relevant exposure scenarios for many aquatic organisms are pulsed exposures. Quantifying exposure using discrete water samples may not be accurate as few studies are able to sample frequently enough to accurately determine time-weighted average (TWA) concentrations of short aquatic exposures. Integrative sampling methods that continuously sample freely dissolved contaminants over time intervals (such as integrative passive samplers) have been demonstrated to be a promising measurement technique. We conducted several modeling scenarios to test the assumption that integrative methods may require many less samples for accurate estimation of peak 96-h TWA concentrations. We compared the accuracies of discrete point samples and integrative samples while varying sampling frequencies and a range of contaminant water half-lives (t50 = 0.5, 2, and 8 d). Differences the predictive accuracy of discrete point samples and integrative samples were greatest at low sampling frequencies. For example, when the half-life was 0.5 d, discrete point samples required 7 sampling events to ensure median values > 50% and no sampling events reporting highly inaccurate results (defined as < 10% of the true 96-h TWA). Across all water half-lives investigated, integrative sampling only required two samples to prevent highly inaccurate results and measurements resulting in median values > 50% of the true concentration. Regardless, the need for integrative sampling diminished as water half-life increased. For an 8-d water half-life, two discrete samples produced accurate estimates and median values greater than those obtained for two integrative samples. Overall, integrative methods are the more accurate method for monitoring contaminants with short water half-lives due to reduced frequency of extreme values, especially with uncertainties around the timing of pulsed events. However, the acceptability of discrete sampling methods for providing accurate concentration measurements increases with increasing aquatic half-lives.
Mostrar más [+] Menos [-]