Refinar búsqueda
Resultados 631-640 de 753
On the relationship between ozone and its precursors in the Pearl River Delta: application of an observation-based model (OBM) Texto completo
2010
Cheng, Hairong | Guo, Hai | Wang, Xinming | Saunders, Sam M | Lam, S. H. M | Jiang, Fei | Wang, Tijian | Ding, Aijun | Lee, Shuncheng | Ho, K. F
Background, aim, and scope Photochemical smog, characterized by high concentrations of O₃ and fine particles, is of great concern in the urban areas, in particular megacities and city clusters like the Pearl River Delta. Materials, methods, and results Ambient ozone (O₃) and its precursors were simultaneously measured at two sites in the Pearl River Delta, namely, Wan Qing Sha (WQS) in Guangzhou and Tung Chung (TC) in Hong Kong, from 23 October to 01 December 2007 in order to explore their potential relationship. Eight high O₃ episode days were identified at WQS and two at TC during the sampling campaign, indicating a more serious O₃ pollution in Guangzhou than in Hong Kong. An observation-based model was employed to determine the ozone-precursor relationship. At both sites, O₃ production was found to be volatile organic compound (VOC)-limited, which is consistent with previous observations. Anthropogenic hydrocarbons played a key role in O₃ production, while reducing nitric oxide emissions aided the buildup of O₃ concentrations. Among VOC species, the summed relative incremental reactivity (RIR) of the top 12 compounds accounted for 89% and 85% of the total RIR at WQS and TC, respectively, indicating that local photochemical O₃ formation can be mainly attributed to a small number of VOC species. Discussion and conclusions A large increment in both simulated HO₂ and O₃ concentrations was achieved with additional input of hourly carbonyl data. This suggested that apart from hydrocarbons, carbonyls might significantly contribute to the O₃ production in the Pearl River Delta.
Mostrar más [+] Menos [-]Evaluation of surface water quality using an ecotoxicological approach: a case study of the Alqueva Reservoir (Portugal) Texto completo
2010
Palma, Patricia | Alvarenga, Paula | Palma, Vera | Matos, Cláudia | Fernandes, Rosa Maria | Soares, Amadeu | Barbosa, Isabel Rita
Background, aim, and scope Freshwater reservoirs can be impacted by several hazardous substances through inputs from agricultural activity, sewage discharges, and groundwater leaching and runoff. The water quality assessment is very important for implementation of the monitoring and remediation programs to minimize the risk promoted by hazardous substances in aquatic ecosystems. Evaluation of the degree of contamination of aquatic environments must not take in account only its chemical characterization but it must be complemented with biological assays, which determine potential toxic effects and allows an integrated evaluation of its effects in populations and aquatic ecosystem communities. The application of this type of strategy has clear advantages allowing a general evaluation of the effects from all the water components, including those due to unknown substances and synergic, antagonistic, or additive effects. There are only a few studies that reported ecotoxicological acute end points, for the assessment of surface water quality, and the relationship among toxicity results and the anthropogenic pollution sources and the seasonal period. The aim of this study was to assess the ecotoxicological characterization of the surface water from Alqueva reservoir (South of Portugal) and to evaluate the influence of anthropogenic sources of pollution and their seasonal variation in its toxicity. The construction of Alqueva reservoir was recently finished (2002) and, to our knowledge, an ecotoxicological assessment of its surface water has not been performed. Because of that, no information is available on the possible impact of pollutants on the biota. The surface water toxicity was assessed using acute and chronic bioassays. The results are to be used for developing a monitoring program, including biological methods. Materials and methods Water samples were collected during 2006-2007, at each of the nine sampling sites selected in Alqueva reservoir. These sampling points allow an assessment at the upstream (Sra. Ajuda, Alcarrache, Álamos-Captação), at the middle (Alqueva-Montante, Alqueva-Mourão, Lucefecit), and at the downstream of the water line (Alqueva-Jusante; Ardila-confluência; Moinho das Barcas). The campaigns occurred in February, March, May, July, September, and November of 2006 and February, March, and May of 2007. The rainy season comprised November, February, and March, and the dry season included May, July, and September. A total of 81 samples were collected during the study period. The physical-chemical parameters were analyzed following standard and recommended methods of analysis (APHA et al. 1998). The pesticide analyses were performed using gas chromatography according to DIN EN ISO 6468 (1996). Surface water ecotoxicity was evaluated using the following bioassays: Vibrio fischeri luminescence inhibition, Thamnocephalus platyurus mortality, and Daphnia magna immobilization and reproduction assay. The Spearman rank correlation coefficients were used to evaluate the associations between the water sample physicochemical properties (from each sampling station in each season) and the acute and chronic toxicological effects, with a level of significance p < 0.05. Results In the acute toxicity study, the species that was found to be the most sensitive was T. platyurus. T. platyurus detected a higher number of toxic water samples during the dry season. Concerning the luminescent inhibition of V. fischeri, the results showed that this organism detected a great number of toxic water samples in rainy seasons. The water samples, which promoted higher toxic effects towards this species, were from the north and from the middle of the reservoir. The correlation analysis showed that V. fischeri luminescent inhibition (%) was positively correlated with total phosphorus, chlorpyrifos, iron, and arsenic. T. platyurus mortality (%) was positively correlated with the water pH, 5-day biochemical oxygen demand (BOD₅), chlorides, atrazine, simazine, terbuthylazine, and endosulfan sulfate contents. Although the surface waters did not promote acute toxicity to the crustacean D. magna, in the chronic exposure, a significant decrease in the number of juveniles per female was observed, mainly at the dry period. The number of juveniles per female, in the reproduction test of D. magna, was negatively correlated with pH, temperature, BOD₅, chloride, atrazine, simazine, terbuthylazine, and endosulfan sulfate. The water toxicity of the Alqueva water might be due principally to the intensive agriculture activities surrounding the reservoir and to the municipal wastewater discharges. Discussion The physicochemical parameters and the pesticide concentrations indicated that the water quality was worse in the north part of the reservoir system. These results are characteristic of the majority of reservoirs, once the construction of the dam promoted, by itself, the impounding of water flow and the increase of compound residence time. The toxicity tests corroborate with the chemical characterization. Acute toxicity of Alqueva water may be a result of the effect promoted by chlorpyrifos, endosulfan sulfate, phosphorus, and iron. Chronic toxicity may be a result of the effect of herbicides, arsenic, organic matter, endosulfan sulfate in mixture. Hence, the water toxicity of the Alqueva might be due principally to the intensive agriculture activities surrounding the reservoir and to the municipal wastewater discharges. Conclusions This study has shown that a large number of samples from different sites of the Alqueva reservoir contained potentially toxic contaminants. The sites with impaired water quality were those located at the north of the reservoir and in the surrounding areas of intensive agricultural activity. The results demonstrated that the use of a screening of acute and chronic toxicity tests with organisms from different trophic levels and with distinct sensibilities allowed the detections of several patterns of toxicity from spatial and temporal variability promoted by natural or anthropogenic sources. The chronic responses showed, especially in the dry season, that some of the species belonging to this aquatic ecosystem might be at risk. Recommendations and perspectives The V. fischeri and T. platyurus are two species that should be used in the acute bioassays for the ecotoxicological monitoring programs of this reservoir. It is recommended that other species, such as a productive organism (algae), be included in the next study, once the water reservoir had high levels of herbicides. Ecotoxicological assessment of surface water must integrate initial screening based on acute tests followed always by chronic bioassays. The results implicitly suggest that the implementation of processes of remediation by reducing pollutant input into the reservoir and by the implementation of water treatment processes is important and necessary.
Mostrar más [+] Menos [-]Assessment of water quality in the Alqueva Reservoir (Portugal) using bioassays Texto completo
2010
Pérez, Joanne Rodríguez | Loureiro, Susana | Menezes, Salomé | Palma, Patricia | Fernandes, Rosa M. | Barbosa, Isabel R. | Soares, Amadeu M. V. M.
Background, aim, and scope Alqueva Reservoir is the biggest artificial freshwater reservoir in Europe and is an important water supply for human and agricultural consumption in the Alentejo region (Portugal). Pollution can impair environmental and human health status, and to assure water quality and ecological balance, it is crucial to frequently monitor water supplies. In this study, we used an ecotoxicological test battery to identify the potential toxicity of water from this reservoir. Materials and methods Water samples from the Alqueva aquatic system were collected bimonthly in 2006 from 11 different water points within the reservoir. Several bioassays were carried out: a 72-h growth test with Pseudokirchneriella subcapitata, a 6-day growth test with Chironomus riparius larvae, and the luminescence inhibition test with Vibrio fischeri (Microtox®). Results and discussion Algae growth was significantly inhibited in several sampling points and periods throughout the year, mainly due to the presence of pesticides. Although in some sampling points pesticide concentrations (single and sum) were still below the maximum permissible concentrations, water samples showed high toxicities to algae, especially during the summer months. In addition, several sampling points showed pesticide concentrations above the permissible level which can pose a significant risk to humans and the environment. Chironomids showed less sensitivity to the water samples, possibly due to the low concentrations of insecticides present. V. fischeri showed no sensitivity when exposed to all the water samples collected throughout the year of 2006. Conclusions Standardized laboratory bioassays can be useful tools to assess water quality from aquatic systems and can valuably complement chemical analysis evaluation. The results obtained in this study demonstrated that the most sensitive species used in this test battery was the microalgae P. subcapitata. The growth of C. riparius was less affected, which is probably due to the fact that low insecticide concentrations were measured and, furthermore, since this species lives in the sediment and not in the water column and is, therefore, usually more resistant to pollutants. Recommendations and perspectives On its own, chemical analysis is not enough to derive conclusions on the water quality and/or status, which can be valuably complemented by laboratory bioassays. Single chemical, maximum permissible values, and the sum of pesticide concentrations do not take into account possible patterns of synergism, antagonism, dose level dependencies, or even the dominance of several chemicals within a mixture. In addition, several species from different levels in trophic chains are recommended due to differences in species' sensitivities to chemical compounds that are present.
Mostrar más [+] Menos [-]Factorial analysis of the trihalomethane formation in the reaction of colloidal, hydrophobic, and transphilic fractions of DOM with free chlorine Texto completo
2010
Platikanov, Stefan | Tauler, Roma | Rodrigues, Pedro M. S. M. | Antunes, Maria Cristina G. | Pereira, Dilson | Esteves da Silva, Joaquim C. G.
BACKGROUND, AIM, AND SCOPE: This study focuses on the factors that affect trihalomethane (THMs) formation when dissolved organic matter (DOM) fractions (colloidal, hydrophobic, and transphilic fractions) in aqueous solutions were disinfected with chlorine. MATERIALS AND METHODS: DOM fractions were isolated and fractionated from filtered lake water and were characterized by elemental analysis. The investigation involved a screening Placket-Burman factorial analysis design of five factors (DOM concentration, chlorine dose, temperature, pH, and bromide concentration) and a Box-Behnken design for a detailed assessment of the three most important factor effects (DOM concentration, chlorine dose, and temperature). RESULTS: The results showed that colloidal fraction has a relatively low contribution to THM formation; transphilic fraction was responsible for about 50% of the chloroform generation, and the hydrophobic fraction was the most important to the brominated THM formation. DISCUSSION: When colloidal and hydrophobic fraction solutions were disinfected, the most significant factors were the following: higher DOM fraction concentration led to higher THM concentration, an increase of pH corresponded to higher concentration levels of chloroform and reduced bromoform, higher levels of chlorine dose and temperature produced a rise in the total THM formation, especially of the chlorinated THMs; higher bromide concentration generates higher concentrations of brominated THMs. Moreover, linear models were implemented and response surface plots were obtained for the four THM concentrations and their total sum in the disinfection solution as a function of the DOM concentration, chlorine dose, and temperature. Overall, results indicated that THM formation models were very complex due to individual factor effects and significant interactions among the factors. CONCLUSIONS: In order to reduce the concentration of THMs in drinking water, DOM concentrations must be reduced in the water prior to the disinfection. Fractionation of DOM, together with an elemental analysis of the fractions, is important issue in the revealing of the quality and quantity characteristics of DOM. Systematic study composed from DOM fraction investigation and factorial analysis of the responsible parameters in the THM formation reaction can, after an evaluation of the adjustment of the models with the reality, serves well for the evaluation of the spatial and temporal variability in the THM formation in dependence of DOM. However, taking into consideration the natural complexity of DOM, different operations and a strict control of them (like coagulation/flocculation and filtration) has to be used to quantitatively remove DOM from the raw water. RECOMMENDATIONS AND PERSPECTIVES: Assuming that this study represents a local case study, similar experiments can be easily applied and will supply with relevant information every local water treatment plant meeting problems with THM formation. The coagulation/flocculation and the filtration stages are the main mechanisms to remove DOM, particularly the colloidal DOM fraction. With the objective to minimize THMs generation, different unit operation designed to quantitatively remove DOM from water must be optimized.
Mostrar más [+] Menos [-]Addition of CaCO3 in the incineration of a wastewater sludge at 900° C preparation of desulfurant sorbents with the incinerated sludge Texto completo
2010
Renedo Omaechevarría, Josefina | Rico Gutiérrez, José Luis | Rico de la Hera, Carlos | Fernández Ferreras, Josefa | Universidad de Cantabria
With the aim of developing new uses of sewage sludge, a byproduct of municipal wastewater treatment plants, in the present work the calcination at 900° C of this waste with or without CaCO3 added was performed; the sludge was obtained from a local municipal wastewater treatment plant. The purpose was to study the ability of the CaCO3 to capture SO 2 during the incineration. The resulting ashes were reactivated at different experimental conditions to obtain desulfurant sorbents to be used in a further desulfurization process at low tempreature. The humidity, total solids and fixed and volatile solids were determined in the sludge with and without CaCO3 added. The elementary analysis of the dry sludge and of the calcinated was obtained. Results show that the C percentage highly decreases in the incineration due to the release of the volatile carbon compounds. The sulphur percentage increases principally due to the release of the volatile matter. The resulting ashes with or without CaCO3 added were studied by Thermogravimetry. T.G. curves show that not all the CaCO3 was calcinated mainly when the amout of CaCO3 added was high. The specific surface area of the dry sludge, of the ashes and of the sorbents prepared by reacitivation of the ashes was also determined | We are thankful to MICINN for financial support of this work under Porject MAT 2009-10727
Mostrar más [+] Menos [-]Organocopper complexes during roxarsone degradation in wastewater lagoons Texto completo
2010
Andra, Syam S | Makris, Konstantinos C | Quazi, Shahida | Sarkar, Dibyendu | Datta, Rupali | Bach, Stephan B. H
Background, aim, and scope Organoarsenical-containing animal feeds that promote growth and resistance to parasites are mostly excreted unchanged, ending up in nearby wastewater storage lagoons. Earlier work documented the partial transformation of organoarsenicals, such as, 3-nitro-4-hydroxyphenylarsonic acid (roxarsone) to the more toxic inorganic arsenate [As(V)] and 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA). Unidentified roxarsone metabolites using liquid chromatography coupled to inductively coupled plasma mass spectrometry (LC/ICP-MS) were also inferred from the corresponding As mass balance. Earlier batch experiments in our laboratory suggested the presence of organometallic (Cu) complexes during relevant roxarsone degradation experiments. We hypothesized that organocopper compounds were complexed to roxarsone, mediating its degradation in field-collected swine wastewater samples from storage lagoons. The objective of this study was to investigate the role of organometallic (Cu) complexes during roxarsone degradation under aerobic conditions in swine wastewater suspensions, using electrospray ionization mass spectrometry (ES-MS). Materials and methods Two swine wastewater samples differing in % solids content and total recoverable Cu concentrations were reacted with 500 ppb of roxarsone under aerobic conditions for 16 days. LC/ICP-MS and ES-MS were used for As speciation analyses, and characterization of metal-organoarsenical complexes in swine wastewater subsamples, respectively. Results and discussion An organocopper roxarsone metabolite was found only in the high-Cu wastewater sample, suggesting the role of Cu in roxarsone degradation under aerobic conditions. The organocopper metabolite was not found in the low-Cu wastewater sample, because roxarsone did not undergo degradation under aerobic conditions even after 16 days. Conclusions Aerobic degradation of organoarsenicals (roxarsone) has not been documented before. Preliminary dataset from this study illustrates the direct and/or indirect association of particulate Cu in catalyzing roxarsone degradation under aerobic conditions in samples with high % solids content. Recommendations and perspectives Concerns regarding the degradation of roxarsone in wastewater to the more toxic inorganic As may be partially linked to the presence of particulate Cu. The presence of Cu in wastewater-suspended particle surfaces has never been coupled before to organoarsenicals degradation reactions, thus, further studies are needed to elucidate the related reaction mechanisms and pathways. Water depth-dependent solid particle distribution profiles in wastewater storage lagoons could provide empirical evidence towards the design of effective degradation practices for nitrophenol-containing compounds, such as, organoarsenical-containing antibiotics, or explosive munitions compounds.
Mostrar más [+] Menos [-]Responses of terrestrial arthropods to air pollution: a meta-analysis Texto completo
2010
Zvereva, Elena L. | Kozlov, Mikhail V.
Background, aim, and scope Arthropods, with over a million species described, are ubiquitous throughout different environments. Knowledge of their responses to human impact is crucial for understanding and predicting changes in ecosystem structure and functions. Our aim was to investigate the general patterns and to identify sources of variation in changes of the diversity, abundance and fitness of terrestrial arthropods (including Arachnida, Collembola and Insecta) in habitats affected by point polluters. Main features We found 134 suitable studies which were published between 1965 and 2007. These data came from impact zones of 74 polluters in 20 countries with the largest representation from Russia (28 polluters), Poland (12 polluters) and the USA (six polluters). The database allowed calculation of 448 effect sizes (i.e. relative differences between measurements taken from polluted and control sites) on the effects of various point polluters like non-ferrous industries, aluminium plants, cement, magnezite, fertilising and chemical plants, power plants, iron- and steel-producing factories. We used meta-analysis to search for general effects and to compare between polluter types and arthropod groups, and linear regression to describe the latitudinal gradient and to quantify relationships between pollution and arthropod responses. Results The overall effect of pollution on arthropod diversity did not differ from zero. However, species richness of soil arthropods (both living on the soil surface and within the soil) tended to decrease, and species richness of herbivores to increase, near point polluters. Abundance of terrestrial arthropods near point polluters decreased in general. This decrease resulted from strong adverse effects on soil arthropods, especially on decomposers and predators. Densities of herbivores increased, but a number of research biases that we discovered in published data may have led to overestimation of the latter effect. The dome-shaped density pattern along pollution gradients was discovered only in 5% of data sets. Among herbivores, only free-living defoliators and sap-feeders demonstrated higher densities in polluted sites; the effects of pollution on other guilds were not significant. Near the polluters, conifers suffered higher increase in damage from herbivores than deciduous woody plants and herbs. Overall effect of pollution on arthropod performance was negative; in particular, individuals from polluted sites were generally smaller than individuals from control sites. This negative effect weakened with increase in duration of the pollution impact, hinting evolution of pollution resistance in populations inhabiting polluted sites. Stepwise regression analysis demonstrated that pollution-induced changes in both the density and performance of arthropods depended on climate of the locality. Negative effects on soil fauna increased with increase in annual precipitation; positive effects on herbivore population density increased with increases in both mean July temperature and annual precipitation. Discussion We detected effects of research methodology on the outcome of published studies. Many of them suffer from research bias—the tendency to collect data on organisms or under conditions in which one has an expectation of detecting significant effects. Pseudoreplicated studies (one polluted site contrasted to one control site) frequently reported larger effects than replicated studies (several polluted sites contrasted with several control sites). These methodological flaws especially influenced herbivory studies; we conclude that increase in herbivory in both heavily and moderately polluted habitats is not as frequent as it was earlier suggested. In contrast, the decrease in abundance of predators is likely to be a widespread phenomenon. Thus, our analysis supports the hypothesis that pollution may favour herbivore populations by creating an enemy-free space. Consistent declines in abundance of soil arthropods in impact zones of different polluters suggest that this group can potentially be used in bioindication of pollution-induced changes in terrestrial ecosystems. Conclusions Main effects of pollution on arthropod communities (decreased abundance of decomposers and predators and increased herbivory) may have negative consequences for structure and services of entire ecosystems. Responses of arthropods to pollution depend on both temperature and precipitation in such a way that ecosystem-wide adverse effects are likely to increase under predicted climate change. Recommendations and perspectives Our analysis confirmed that local severe impacts of industrial enterprises on biota are well-suited to reveal the direction and magnitude of the biotic effects of aerial pollution, as well as to explore the sources of variation in responses of organisms and communities. Although we analysed the effects of point polluters, our conclusions can be applied to predict consequences of pollution impacts on regional and even global scales. We argue that possible interactions between pollution and climate should be accounted for in the analyses of global change impacts on biota.
Mostrar más [+] Menos [-]Variation of airborne bacteria and fungi at Emperor Qin's Terra-Cotta Museum, Xi'an, China, during the “Oct. 1” Gold Week Period of 2006 Texto completo
2010
Chen, Yiping | Cui, Ying | Dong, Jun-Gang
Background, aim, and scope To stimulate the national economy, a so-called “gold week” comprising May Day and National Day has been put in force by the government, and the first golden-week holiday began on October 1, 1999. Statistical data show that about 15,000 visitors were received each day by Emperor Qin's Terra-Cotta Museum during just such a gold week period. To evaluate the effects of tourism on indoor air, airborne samples were collected by the sedimentation plate method for 5 min during the “Oct. 1” gold week period of 2006, and both composition and changes of airborne bacteria and fungi in indoor/outdoor air in the museums were investigated. Materials and methods Airborne microbes were simultaneously collected by means of gravitational sedimentation on open Petri dishes. Three parallel samples were collected at the same time each day, and samples were subsequently incubated in the lab. Microbiology media were prepared before each experiment by a professional laboratory. Concentrations were calculated and presented as average data of colony-forming units per cubic meter of air (CFU/m³). Results The results show that (1) 13 bacterial genera and eight genera of fungi were identified from indoor and outdoor air at Emperor Qin's Terra-Cotta Museum during “Oct. 1” gold week in 2006. The bacterial groups occupied 61%, the fungi groups occupied 36%, and others occupied 3% of the total number of isolated microorganism genera. (2) As for the comparison of indoor and outdoor samples, the average concentrations of fungi were higher during the afternoon (13:00) than for the morning (09:00). The average concentrations of bacteria in indoor air were higher during the afternoon (13:00) than for the morning (9:00), and in outdoor air, they were lower during the afternoon (13:00) than for the morning (9:00). (3) The average concentrations of five dominant groups of bacteria and three dominant groups of fungi were higher during the afternoon (13:00) than for the morning (9:00) in the indoor air, but the average concentrations of fungi were higher and those of bacteria were lower during the afternoon than for the morning, for outdoor air. (4) As for the comparison of indoor samples, the bacterial daily concentrations and fungal daily concentrations were higher during the afternoon (13:00) than those for the mornings (9:00) over the 10 days. For the comparison of outdoor samples, the bacterial concentration was lower, and the fungal concentrations were higher during the afternoon (13:00) than those for the morning (9:00) over the 10 days. Discussion The results also show that the numbers of airborne bacteria and fungi had a daily character in indoor air and were higher in the afternoon. The airborne microbe concentrations were found to be similar to residential indoor values from other reports; the indoor museum maximum of microbial concentrations was 90 CFU/m³ and did not exceed the Chinese indoor bioaerosol guideline. However, microorganisms may fall on the surface of display items as a result of particle sedimentation and would, as such, be capable of degrading objects by way of their secretions, e.g., enzymes and organic acids. Therefore, the right steps should be taken to prevent any deterioration in the quality of displayed artifacts. Conclusions The results show that museum air was affected by human activity; therefore, it is imperative that the number of visitors be strictly limited and that windows be opened regularly to avoid air pollution. Recommendations and perspectives The data provide a significant scientific basis for indoor air quality control and museum scientific management. It is recommended that the number of visitors be strictly limited.
Mostrar más [+] Menos [-]Submarine wastewater discharges: dispersion modelling in the Northern Adriatic Sea Texto completo
2010
Background, aim and scope Opposite interests must coexist in coastal areas: the presence of significant cities and urban centres, of touristic and recreational areas, and of extensive shellfish farming. To avoid local pollution caused by treated wastewaters along the Northern Adriatic coast (Friuli Venezia-Giulia and Veneto regions), marine outfall systems have been constructed. In this study, the application of a numerical dispersion model is used to support the traditional monitoring methods in order to link information concerning the hydrodynamic circulation and the microbiological features, to evaluate possible health risks associated with recreational and coastal shellfish farming activities. The study is a preliminary analysis of the environmental impact of wastewater treatment plants (WWTPs) with submarine discharge outfalls. It also could be useful for the water profile definition according to the Directive 2006/7/EC on the quality of bathing water and for the integrated areal analysis (Ostoich et al. 2006), to define the area of influence of each submarine discharge point. Materials and methods Historical data on discharges of the considered WWTPs were recovered and evaluated. Data on discharges' control for Veneto region (WWTPs of Lido and Cavallino) were produced by the WWTPs' manager Veritas Laboratory service, while data for the WWTPs of Friuli Venezia-Giulia region were produced by the regional environmental protection agency in the institutional control activity following official methods. The hydrodynamic model used in this work is the three-dimensional version of the finite element model SHYFEM, developed at ISMAR-CNR (Marine Science Institute of the Italian National Research Council) in Venice (Umgiesser et al. J Mar Syst 51:123-145, 2008). Results and discussion Numerical simulations have been carried out with the 3D version of the finite element model SHYFEM for 3 months during autumn 2007 to evaluate the bacterial pollution dispersion along the coasts of Veneto and Friuli Venezia-Giulia regions, prescribing meteo-marine forcings and concentration values at the points corresponding to the positions of the submarine outfalls. Model results show that during autumn 2007 the discharges of the submarine outfalls of the Venice province seem to have no impact on the surface water quality, while there are some visible effects in the Gulf of Trieste. This reflects the behaviour of the experimental data collected by ARPAV and ARPA FVG and monitoring campaigns both on water and shellfish quality. Further results have been elaborated to identify the area of influence of each discharge point; scenarios were developed with imposed concentrations. The results seem to highlight that the two discharges of the Veneto region are not noticeable, while the discharges of the Gulf of Trieste (in particular the Servola and Barcola ones) are perceptible. Conclusions This study represents a new step towards the study of the microbiological pollution dispersion and impact due to the discharges of the submarine outfalls of the Veneto and Friuli Venezia-Giulia regions (nine considered discharge points). With the 3D version of the finite element model SHYFEM, the information obtained from the hydrodynamic circulation has been linked to the classical methods of analysis, to assess possible risks connected to the microbiological parameter Escherichia coli. Recommendations and perspectives In future studies the time scale for microbiological parameters' decay could be linked to various environmental parameters such as light climate, temperature, and salinity. Interesting information would come from the study of new scenarios with different configurations of the discharge of the pipelines and/or the treatment plants and in particular from the improvements of the 3D version of the SHYFEM model, to take the stratification process into account which occurs during spring-summer, since the Northern Adriatic Sea is a very complex ecosystem, both as physical and ecological processes.
Mostrar más [+] Menos [-]Effects of Cd and Pb on soil microbial community structure and activities Texto completo
2010
K̲h̲ān, Sardār | El-Latif Hesham, Abd | Qiao, Min | Rehman, Shafiqur | He, Ji-Zheng
Background, aim, and scope Soil contamination with heavy metals occurs as a result of both anthropogenic and natural activities. Heavy metals could have long-term hazardous impacts on the health of soil ecosystems and adverse influences on soil biological processes. Soil enzymatic activities are recognized as sensors towards any natural and anthropogenic disturbance occurring in the soil ecosystem. Similarly, microbial biomass carbon (MBC) is also considered as one of the important soil biological activities frequently influenced by heavy metal contamination. The polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) has recently been used to investigate changes in soil microbial community composition in response to environmental stresses. Soil microbial community structure and activities are difficult to elucidate using single monitoring approach; therefore, for a better insight and complete depiction of the soil microbial situation, different approaches need to be used. This study was conducted in a greenhouse for a period of 12 weeks to evaluate the changes in indigenous microbial community structure and activities in the soil amended with different application rates of Cd, Pb, and Cd/Pb mix. In a field environment, soil is contaminated with single or mixed heavy metals; so that, in this research, we used the selected metals in both single and mixed forms at different application rates and investigated their toxic effects on microbial community structure and activities, using soil enzyme assays, plate counting, and advanced molecular DGGE technique. Soil microbial activities, including acid phosphatase (ACP), urease (URE), and MBC, and microbial community structure were studied. Materials and methods A soil sample (0-20 cm) with an unknown history of heavy metal contamination was collected and amended with Cd, Pb, and Cd/Pb mix using the CdSO₄ and Pb(NO₃)₂ solutions at different application rates. The amended soils were incubated in the greenhouse at 25 ± 4°C and 60% water-holding capacity for 12 weeks. During the incubation period, samples were collected from each pot at 0, 2, 9, and 12 weeks for enzyme assays, MBC, numeration of microbes, and DNA extraction. Fumigation-extraction method was used to measure the MBC, while plate counting techniques were used to numerate viable heterotrophic bacteria, fungi, and actinomycetes. Soil DNAs were extracted from the samples and used for DGGE analysis. Results ACP, URE, and MBC activities of microbial community were significantly lower (p < 0.05) in the metal-amended samples than those in the control. The enzyme inhibition extent was obvious between different incubation periods and varied as the incubation proceeded, and the highest rate was detected in the samples after 2 weeks. However, the lowest values of ACP and URE activities (35.6% and 36.6% of the control, respectively) were found in the Cd₃/Pb₃-treated sample after 2 weeks. Similarly, MBC was strongly decreased in both Cd/Pb-amended samples and highest reduction (52.4%) was detected for Cd₃/Pb₃ treatment. The number of bacteria and actinomycetes were significantly decreased in the heavy metal-amended samples compared to the control, while fungal cells were not significantly different (from 2.3% to 23.87%). In this study, the DGGE profile indicated that the high dose of metal amendment caused a greater change in the number of bands. DGGE banding patterns confirmed that the addition of metals had a significant impact on microbial community structure. Discussion In soil ecosystem, heavy metals exhibit toxicological effects on soil microbes which may lead to the decrease of their numbers and activities. This study demonstrated that toxicological effects of heavy metals on soil microbial community structure and activities depend largely on the type and concentration of metal and incubation time. The inhibition extent varied widely among different incubation periods for these enzymes. Furthermore, the rapid inhibition in microbial activities such as ACP, URE, and MBC were observed in the 2 weeks, which should be related to the fact that the microbes were suddenly exposed to heavy metals. The increased inhibition of soil microbial activities is likely to be related to tolerance and adaptation of the microbial community, concentration of pollutants, and mechanisms of heavy metals. The DGGE profile has shown that the structure of the bacterial community changed in amended heavy metal samples. In this research, the microbial community structure was highly affected, consistent with the lower microbial activities in different levels of heavy metals. Furthermore, a great community change in this study, particularly at a high level of contamination, was probably a result of metal toxicity and also unavailability of nutrients because no nutrients were supplied during the whole incubation period. Conclusions The added concentrations of heavy metals have changed the soil microbial community structure and activities. The highest inhibitory effects on soil microbial activities were observed at 2 weeks of incubation. The bacteria were more sensitive than actinomycetes and fungi. The DGGE profile indicated that bacterial community structure was changed in the Cd/Pb-amended samples, particularly at high concentrations. Recommendations and perspectives The investigation of soil microbial community structure and activities together could give more reliable and accurate information about the toxic effects of heavy metals on soil health.
Mostrar más [+] Menos [-]