Refinar búsqueda
Resultados 681-690 de 5,151
Evaluating blood and excrement as bioindicators for metal accumulation in birds Texto completo
2018
Berglund, Åsa M.M.
Birds are widely used to assess metal contamination in the environment and there are different approaches to determine the exposure level in individuals, some being destructive (collection of soft tissues) and some non-destructive (blood, feathers and excrement). The use of blood to detect internal concentrations of metals is an acknowledged method, but to what extent blood can predict the concentrations in soft tissues has been less well evaluated in wild terrestrial birds. The same is true for excrements. This study compares the non-destructive methods using blood and excrement with liver sampling, with respect to exposure and accumulation of the elements arsenic, cadmium, copper, lead and zinc in nestling pied flycatchers (Ficedula hypoleuca). Blood, liver and excrement reflected the environmental exposure of non-essential elements and were independent of nestling sex. There were asymptotic relationships between the concentration of arsenic, cadmium and lead in liver and blood, excrement and liver, and excrement and blood, but none for copper or zinc. Those relationships were generally stronger between liver and blood than between excrements and internal concentrations. Lead had the strongest associations for all matrixes. The conclusion is that blood is an appropriate tool to assess accumulation of arsenic, cadmium and especially lead, but that blood can underestimate the accumulation at highly contaminated sites. Excrement can also give an indication of metal accumulation, but may overestimate internal concentrations at high exposure, and individual variability makes direct comparisons between these matrices less appropriate.
Mostrar más [+] Menos [-]Elevated inflammatory Lp-PLA2 and IL-6 link e-waste Pb toxicity to cardiovascular risk factors in preschool children Texto completo
2018
Lu, Xueling | Xu, Xijin | Zhang, Yu | Zhang, Yuling | Wang, Chenyang | Huo, Xia
Cardiovascular toxicity of lead (Pb) manifests primarily as an effect on blood pressure and eventual increased risk of atherosclerosis and cardiovascular events. Therefore, we investigated vascular inflammatory biomarkers and cardiovascular effects of Pb-exposed children. A total of 590 children (3–7 years old) were recruited from Guiyu (n = 337), an electronic waste (e-waste)-exposed group, and Haojiang (n = 253), a reference group, from November to December 2016. We measured child blood Pb levels (BPbs), and systolic and diastolic blood pressure. Pulse pressure was calculated for the latter two. Serum biomarkers including lipid profiles and inflammatory cytokines, and plasma lipoprotein-associated phospholipase A2 (Lp-PLA2) were detected. Unadjusted regression analysis illustrated that higher ln-transformed BPb associated with lower systolic blood pressure and pulse pressure. After adjustment for various confounders, the relational degree of lnBPb and blood pressure measures became slightly attenuated or not significant. Elevated BPb was associated with higher Lp-PLA2, interleukin (IL)-6, triglycerides (TG) and lower high-density lipoprotein (HDL). Lp-PLA2 remained inversely associated with pulse pressure and HDL, but positively with ratios of total cholesterol to HDL (Tc/HDL) and low-density lipoprotein to HDL (LDL/HDL). IL-6 was associated negatively with systolic blood pressure, pulse pressure and HDL, and positively associated with TG, Tc/HDL and LDL/HDL. The mediation effect of biomarkers on the association of BPb with pulse pressure was insignificant except for Lp-PLA2. Available data supports the conclusion that e-waste-exposed children with higher BPbs and concomitant abnormal measures of cardiovascular physiology have an augmented prevalence of vascular inflammation, as well as lipid disorder.
Mostrar más [+] Menos [-]Investigating the association between urinary levels of acrylonitrile metabolite N-acetyl-S-(2-cyanoethyl)-L-cysteine and the oxidative stress product 8-hydroxydeoxyguanosine in adolescents and young adults Texto completo
2018
Lin, Chien-Yu | Lee, Hui-Ling | Sung, Fung-Chang | Su, Ta-Chen
Acrylonitrile is a colorless volatile liquid mostly present in tobacco smoke. Acrylonitrile exposure has shown to increase oxidative stress in animal studies; however, there was no previous research in human epidemiology. In this study, 853 subjects were recruited from a cohort of Taiwanese adolescents and young adults to investigate the association between urinary concentrations of the acrylonitrile metabolite N-acetyl-S-(2-cyanoethyl)-L-cysteine (CEMA), the oxidative stress product 8-hydroxydeoxyguanosine (8-OHdG) and cardiovascular disease (CVD) risk factors. The geometric mean (SD) of CEMA and 8-OHdG concentrations were 4.67 (8.61) μg/L and 2.97 (2.14) μg/L, respectively. 10% elevated in CEMA (μg/L) was positively correlated with the change of 8-OHdG levels (μg/L) (β = 0.325, SE = 0.105, P = 0.002) in multiple linear regression analyses. The urinary CEMA was not related to other CVD risk factors. In subpopulation analyses, the association between CEMA and 8-OHdG was evident in all genders, adolescents, homeostasis model assessment of insulin resistance score ≥0.89, and environmental tobacco smokers. In this study, we observed that higher levels of CEMA levels were correlated with increased levels of 8-OHdG in this cohort. Future research on exposure to acrylonitrile and oxidative stress was warranted.
Mostrar más [+] Menos [-]Competition magnifies the impact of a pesticide in a warming world by reducing heat tolerance and increasing autotomy Texto completo
2018
Op de Beeck, Lin | Verheyen, Julie | Stoks, Robby
There is increasing concern that standard laboratory toxicity tests may be misleading when assessing the impact of toxicants, because they lack ecological realism. Both warming and biotic interactions have been identified to magnify the effects of toxicants. Moreover, while biotic interactions may change the impact of toxicants, toxicants may also change the impact of biotic interactions. However, studies looking at the impact of biotic interactions on the toxicity of pesticides and vice versa under warming are very scarce. Therefore, we tested how warming (+4 °C), intraspecific competition (density treatment) and exposure to the pesticide chlorpyrifos, both in isolation and in combination, affected mortality, cannibalism, growth and heat tolerance of low- and high-latitude populations of the damselfly Ischnura elegans. Moreover, we addressed whether toxicant exposure, potentially in interaction with competition and warming, increased the frequency of autotomy, a widespread antipredator mechanism. Competition increased the toxicity of chlorpyrifos and made it become lethal. Cannibalism was not affected by chlorpyrifos but increased at high density and under warming. Chlorpyrifos reduced heat tolerance but only when competition was high. This is the first demonstration that a biotic interaction can be a major determinant of ‘toxicant-induced climate change sensitivity’. Competition enhanced the impact of chlorpyrifos under warming for high-latitude larvae, leading to an increase in autotomy which reduces fitness in the long term. This points to a novel pathway how transient pesticide pulses may cause delayed effects on populations in a warming world. Our results highlight that the interplay between biotic interactions and toxicants have a strong relevance for ecological risk assessment in a warming polluted world.
Mostrar más [+] Menos [-]Effects of the bioconcentration and parental transfer of environmentally relevant concentrations of difenoconazole on endocrine disruption in zebrafish (Danio rerio) Texto completo
2018
Teng, Miaomiao | Qi, Suzhen | Zhu, Wentao | Wang, Yao | Wang, Dezhen | Dong, Kai | Wang, Chengju
Difenoconazole, a typical triazole fungicide, inhibits lanosterol-14R-demethylase (CYP51) to prevent fungal sterol synthesis and its residues are frequently detected in the environment due to its wide application. Previous studies have demonstrated that difenoconazole altered the triglyceride levels, and gene expression relevant to cholesterol biosynthesis in zebrafish. However, endocrine-disruption in the hypothalamus-pituitary-gonadal-liver (HPGL) axis, the effects of transferring to offspring, and the underlying mechanisms of difenoconazole in aquatic organisms are still unknown. In this study, we defined the effects of difenoconazole at environmental concentrations on endocrine disturbance using zebrafish as an experimental model. The results indicated that difenoconazole induced a significant change in the somatic index, and pathological variations in tissues, and steroid hormone levels. RT-PCR experiments further confirmed that difenoconazole significantly induced expression alteration of lhr, hsd3β, hsd11β, cyp19a in the ovary and star, cyp19a, cyp3c1 in the testis, and erα genes in livers. In addition, difenoconazole exposure in parental zebrafish affected the hatchability and length of its offspring. Moreover, the burdens of difenoconazole and difenoconazole alcohol in females were higher than in males. These findings highlighted that difenoconazole exposure at environmentally relevant concentrations elicited estrogenic endocrine-disruption effects via altering homeostasis of sex steroid hormones in the HPGL axis and the adverse effects can be transferred to the offspring.
Mostrar más [+] Menos [-]Contamination of short-chain chlorinated paraffins to the biotic and abiotic environments in the Bohai Sea Texto completo
2018
Jiang, Wanyanhan | Huang, Tao | Chen, Han | Lian, Lulu | Liang, Xiaoxue | Jia, Chenhui | Gao, Hong | Mao, Xiaoxuan | Zhao, Yuan | Ma, Jianmin
Short-chain chlorinated paraffins (SCCPs) have been produced and emitted intensively around the Bohai Sea, potentially causing risks to this unique ecosystem and one of primary fishery resources in China and busiest seaways in the world. Little is known about fate, cycling, and sources of SCCPs in the Bohai Sea biotic and abiotic environment. In this study, we combined a marine food web model with a comprehensive atmospheric transport-multiple phase exchange model to quantify SCCPs in the biotic and abiotic environment in the Bohai Sea. We performed multiple modeling scenario investigations to examine SCCP levels in water, sediment, and phytoplankton. We assessed numerically dry and wet depositions, biomagnification and bioaccumulation of SCCPs in the Bohai Sea marine food web. Results showed declining SCCP levels in water and sediment with increasing distance from the coastline, and so do dry and wet depositions. The net deposition overwhelmed the water-air exchange of SCCPs due to their current use in China, though the diffusive gas deposition fluctuated monthly subject to mean wind speed and temperature. A risk assessment manifests that SCCPs levels in the Bohai Sea fish species are at present not posing risks to the residents in the Bohai Sea Rim region. We identified that the SCCP emission sources in the south of the Bohai Sea made a primary contribution to its loadings to the seawater and fish contamination associated with the East Asian summer monsoon. In contrast, the SCCP emissions from the north and northwest regions of the Bohai Sea were major sources contributing to their loading and contamination to Bohai Sea food web during the wintertime, potentially driven by the East Asian winter monsoon.
Mostrar más [+] Menos [-]Adsorption and co-adsorption of graphene oxide and Ni(II) on iron oxides: A spectroscopic and microscopic investigation Texto completo
2018
Sheng, Guodong | Huang, Chengcai | Chen, Guohe | Sheng, Jiang | Ren, Xuemei | Hu, Baowei | Ma, Jingyuan | Wang, Xiangke | Huang, Yuying | Alsaedi, Ahmed | Hayat, Tasawar
Graphene oxide (GO) may strongly interact with toxic metal ions and mineral particles upon release into the soil environment. We evaluated the mutual effects between GO and Ni (Ni(II)) with regard to their adsorption and co-adsorption on two minerals (goethite and hematite) in aqueous phase. Results indicated that GO and Ni could mutually facilitate the adsorption of each other on both goethite and hematite over a wide pH range. Addition of Ni promoted GO co-adsorption mainly due to the increased positive charge of minerals and cation–π interactions, while the presence of GO enhanced Ni co-adsorption predominantly due to neutralization of positive charge and strong interaction with oxygen-containing functional groups on adsorbed GO. Increasing adsorption of GO and Ni on minerals as they coexist may thus reduce their mobility in soil. Extended X-ray absorption fine structure (EXAFS) spectroscopy data revealed that GO altered the microstructure of Ni on minerals, i.e., Ni formed edge-sharing surface species (at RNᵢ₋Fₑ∼3.2 Å) without GO, while a GO-bridging ternary surface complexes (at RNᵢ₋C∼2.49 Å and RNᵢ₋Fₑ∼4.23 Å) was formed with GO. These findings improved the understanding of potential fate and toxicity of GO as well as the partitioning processes of Ni ions in aquatic and soil environments.
Mostrar más [+] Menos [-]Comparison of PM2.5 chemical composition and sources at a rural background site in Central Europe between 1993/1994/1995 and 2009/2010: Effect of legislative regulations and economic transformation on the air quality Texto completo
2018
Pokorná, Petra | Schwarz, Jaroslav | Krejci, Radovan | Swietlicki, Erik | Havránek, Vladimír | Ždímal, Vladimír
From December 1993 to January 1995 and from October 2009 to October 2010, a total of 320 and 365 daily samples of the PM2.5 were collected at a rural background site (National Atmospheric Observatory Košetice) in Central Europe. The PM2.5 samples were analyzed for 29 and 26 elements respectively by Particle-Induced X-ray Emission (PIXE) and water-soluble inorganic ions by Ion Chromatography (IC) in 2009/2010. The Positive Matrix Factorization (PMF) was applied to the chemical composition of PM2.5 to determine its sources. The decreasing trends of almost all elements concentrations, especially the metals regulated by the EU Directive (2004/107/EC) are evident. The annual median ratios indicate a decrease in concentrations of the PM2.5 elements. The slight increase of K concentrations and Spearman's rank correlation coefficient rs 0.09 K/Se points to a rise in residential wood combustion. The S concentrations are nearly comparable (higher mean in 2009/2010, while the annual median ratio is under 1). The five major source types in the mid-1990s were ascribed to brown coal combustion, oil combustion, sea salt and dust – long-range transport, re-suspended dust and black coal combustion. The industrial combustion of brown and/or black coal (rs 0.75 Se/As, rs 0.57 Ga/Ge and rs 0.20 As/Zn) and oil (rs 0.72 V/Ni) of the regional origin dominated. In the 1990s, the potential source regions were the border area of Czech Republic, German and Poland (brown coal), the Moravia-Silesia region at the Czech-Polish border (black coal), and Slovakia, Austria, Hungary, and the Balkans (oil). In 2009/2010, the apportioned sources were sulfate, residential heating, nitrate, industry, re-suspended dust, and sea salt and dust – long-range transport. The secondary sulfate from coal combustion and residential biomass burning (rs 0.96, K/K+) of local origin dominated.The declining trend of the elemental concentrations and change in the source pattern of the regional background PM2.5 in Central Europe between the mid-1990s and 2009/10 reflects the economic transformation and impact of stricter legislation in Central Europe.
Mostrar más [+] Menos [-]Microplastics integrating the coastal planktonic community in the inner zone of the Río de la Plata estuary (South America) Texto completo
2018
Pazos, Rocío S. | Bauer, Delia E. | Gómez, Nora
This study explores in plankton samples the abundance, distribution, size, types (fibres and fragments), colours of the microplastics (MPs) and its relation with the characteristics of the plankton (size and morphology) of the Río de la Plata estuary. Water samples were collected in triplicate in freshwater-mixohaline tidal zone of the estuary, in ten sampling sites located along 150 km of coast, in two periods (September–November 2016 and April–June 2017). The results revealed the presence of MPs in all the samples analysed, with a dominance of fibres and sizes >500 ≤ 1000 μm, and blue colour being more frequent. The MPs distribution was significantly different among sampling sites, being more abundant in the most urbanized sites, sewage discharges and near the maximum turbidity front. The mean density, in the two samplings analysed, were 164 and 114 MPs m⁻³. The fibres amount was significantly different among sites. The MPs integrated a planktonic community dominated by pico-microphytoplankton, mainly conformed by filaments/chains and solitary forms and by micro-mesozooplankton. The comparative analysis of plankton and MPs demonstrated that a fraction of the latter showed a frequency range of size that coincides with the most common sizes of plankton (≤500 μm). The mean percentage of MPs items in relation to zooplankton was 0.36% (sampling 1) and 1.20% (sampling 2) and for phytoplankton was 0.0002% (sampling 1) and 0.0005% (sampling 2). The correlations between the MPs concentration and habitat quality (IHRPlata index) were statistically significant, on the contrary correlations between the MPs concentration and measured environmental variables were not found. The findings of this study emphasises the need for a better treatment of urban waste, which would contribute to reducing the entry of this pollutant into the ecosystem.The presence of microplastics in plankton samples on the coast of the Río de la Plata estuary.
Mostrar más [+] Menos [-]Removal of selenium containing algae by the bivalve Sinanodonta woodiana and the potential risk to human health Texto completo
2018
Zhou, Chuanqi | Huang, Jung-Chen | Liu, Fang | He, Shengbing | Zhou, Weili
Selenium (Se) is an essential micronutrient for animals and humans with a relatively narrow margin between nutritional essentiality and potential toxicity. Even though our previous studies have demonstrated algae could efficiently remove Se, mainly through volatilization, concern is raised about eco-risks posed by the remaining Se in algae. Here, Sinanodonta woodiana was investigated as a biofilter for the removal of Se-containing Chlorella vulgaris and for its potential risk to human health. Our results suggest filtration rates of S. woodiana were independent of Se levels in algal biomass, with a removal efficiency of between 60 and 78%. However, Se concentrations accumulated in mussels were significantly correlated with algal-borne Se levels, with a dietary assimilation efficiency ranging from 12% to 46%. Thus, a pilot biofiltration system was set up to assess uptake and depuration processes. The system was found to efficiently remove Se laden algae through the uptake by mussels, while 21% of Se in mussels could be depurated in 6 days. Among tissues, gills accumulated the highest Se concentration after assimilating algal-borne Se but shed Se compounds in the fastest pace during depuration. Health risks posed by consumption of mussels exposed to different sources of Se were further assessed. S. woodiana accumulated the highest Se concentration after exposure to waterborne SeMet, followed by dietary Se, selenite and control. The relatively higher Se levels were found in gills for all the treatments. After boiling, the most common method of cooking mussels, the greatest reduction in Se concentration occurred in mantle for the control and dietary Se groups and in muscle for the SeMet and selenite treatments. Therefore, within the safe limits, Se-containing mussels can be consumed as a dietary supplement. Overall, our research suggests incorporation of mussels into an algal treatment system can improve Se removal efficiency and also provide financial incentives for practitioners.
Mostrar más [+] Menos [-]