Refinar búsqueda
Resultados 761-770 de 7,292
Insights into the effects of Fenton oxidation on PAH removal and indigenous bacteria in aged subsurface soil Texto completo
2022
Gou, Yaling | Ma, Junsheng | Yang, Sucai | Song, Yun
Combined chemical oxidation and bioremediation is a promising method of treating polycyclic aromatic hydrocarbon (PAH) contaminated soil, wherein indigenous soil bacteria play a critical role in the subsequent biodegradation of PAHs after the depletion of the oxidant. In this study, different Fenton conditions were applied by varying either the oxidation mode (conventional Fenton (CF), Fenton-like (LF), modified Fenton (MF), and graded modified Fenton (GMF)) or the H₂O₂ dosage (0%, 3%, 6%, and 10% (v/v)) to treat PAH contaminated soil. The results revealed that when equal dosages of H₂O₂ are applied, PAHs are significantly removed following oxidation treatment, and the removal percentages obeyed the following sequence: CF > GMF > MF > LF. In addition, higher dosages of H₂O₂ improved the PAH removal from soil treated with the same oxidation mode. The ranges of total PAHs removal efficiencies in the soil added 3%, 6%, and 10% of H₂O₂ (v/v) were 18.04%∼59.48%, 31.88%∼71.83%, and 47.56%∼78.16%, respectively. The PAH removal efficiency decreased with increasing ring numbers for the same oxidation treatment. However, the negative influences on soil bacterial abundance, community composition, and function were observed after Fenton treatment. After Fenton oxidation, the bacterial abundance in the soil received 3%, 6%, and 10% of H₂O₂ (v/v) decreased 1.96–2.69, 2.44–3.22, and 3.09–3.42 orders of magnitude compared to the untreated soil. The soil bacterial abundance tended to be impacted by the oxidation mode and H₂O₂ dosage simultaneously. While the main factor influencing the soil bacterial community composition was the H₂O₂ dosages. The results of this study showed that different oxidation mode and H₂O₂ dosage exhibited different effects on PAHs removal and soil bacteria (including abundance, community composition, and function), and there was a trade-off between the removal of PAHs and the adverse impact on soil bacteria.
Mostrar más [+] Menos [-]Interaction mechanism between chlorinated polyfluoroalkyl ether potassium sulfonate (F–53B) and chromium on different types of soil surfaces Texto completo
2022
Ruan, Jingqi | Tang, Tianhao | Zhang, Ming | Qiao, Weichuan
The coexistence of per- and polyfluoroalkyl substances (PFASs) and heavy metals have been found in soils. However, the interaction between the combined pollutants in soils remains unclear. In this study, the adsorption processes of single and combined Cr(VI) and chlorinated polyfluoroalkyl ether potassium sulfonate (F–53 B) in red, yellow and black soils were simulated. When compared with the single F–53 B and Cr(VI), the adsorption amount of the combined F–53 B and Cr(VI) on soils changed with the types of soils. The interactions between F–53 B and Cr(VI) in soils affected their adsorption behavior. The adsorption of the combined F–53 B and Cr(VI) best fit second-order kinetics and the Freundlich equation. Moreover, aluminum and iron oxides are highly correlated with adsorption of F–53 B and Cr(VI). Both F–53 B and Cr(VI) can form complexes with aluminum and iron oxides through electrostatic interactions, but PFOS could be bridged with iron oxides to form an inner sphere complex and with aluminum oxides to form an outer sphere complex. The coexistence of F–53 B and Cr(VI) could change the fluorescent group of dissolved organic matter (DOM) in soils due to the complexation between F–53 B and DOM. In addition, F–53 B increased the acid-soluble portion of Cr and decreased its residual form, which promoted the environmental risk of Cr in soils.
Mostrar más [+] Menos [-]Effects of methanol, sodium citrate, and chlorella powder on enhanced anaerobic treatment of coal pyrolysis wastewater Texto completo
2022
Shi, Jingxin | Wan, Ning | Han, Hongjun
To better promote environment friendly development of the coal chemical industry, this study investigated effects of methanol, sodium citrate, and chlorella powder (a type of microalgae) as co-metabolic substances on enhanced anaerobic treatment of coal pyrolysis wastewater with anaerobic sludge. The anaerobic sludge was loaded into four 2 L anaerobic reactors for co-metabolism enhanced anaerobic experiments. Anaerobic reactor 1 (R1) as control group did not add a co-metabolic substance; anaerobic reactor 2 (R2) added methanol; anaerobic reactor 3 (R3) added sodium citrate; and anaerobic reactor 4 (R4) added chlorella powder. In the blank control group, the removal ratios of total phenol (TPh), quinoline, and indole were only 12.07%, 42.15%, and 50.47%, respectively, indicating that 50 mg/L quinoline, 50 mg/L indole, and 600 mg/L TPh produced strong toxicity inhibition function on the anaerobic microorganism in reactor. When the concentration of methanol, sodium citrate, and chlorella was 400 μg/L, the reactors with co-metabolic substances had better treatment effect on TPh. Among them, the strengthening effects of sodium citrate (TPh removal ratio: 44.87%) and chlorella (47.85%) were better than that of methanol (38.72%) and the control group (10.62%). Additionally, the reactors with co-metabolic substances had higher degradation ratios on quinoline, indole, and chemical oxygen demand (COD). The data of extracellular polymeric substances showed that with the co-metabolic substances, anaerobic microorganisms produced more humic acids by degrading phenols and nitrogen-containing heterocyclic compounds (NHCs). Compared with the control group, the reactors added with sodium citrate and chlorella had larger average particle size of sludge. Thus, sodium citrate and chlorella could improve sludge sedimentation performance by increasing the sludge particle size. The bacterial community structures of reactors were explored and the results showed that Aminicenantes genera incertae sedis, Levinea, Geobacter, Smithella, Brachymonas, and Longilinea were the main functional bacteria in reactor added with chlorella.
Mostrar más [+] Menos [-]Response addition is more protective of biogeochemical cycles of carbon and phosphorus compared to concentration addition Texto completo
2022
Awuah, Kobby Fred | Jegede, Olukayode | Cousins, Mark | Renaud, Mathieu | Hale, Beverley | Siciliano, Steven Douglas
In soils, enzymes are crucial to catalyzing reactions and cycling elements such as carbon (C), nitrogen (N), and phosphorus (P). Although these soil enzymes are sensitive to metals, they are often disregarded in risk assessments, and regulatory laws governing their existence are unclear. Nevertheless, there is a need to develop regulatory standards for metal mixtures that protect biogeochemical cycles because soil serve as a sink for metals and exposures occur as mixtures. Using a fixed ratio ray design, we investigated the effects of 5 single metals and 10 quinary mixtures of Zn, Cu, Ni, Pb, and Co metal oxides on two soil enzymes (i.e., acid phosphatases [ACP] and beta glucosidases [BGD]) in two acidic Canadian soils (S1: acid sandy forest soil, and S2: acid sandy arable soil), closely matched to EU REACH standard soils. Compared to BGD, ACP was generally the more sensitive enzyme to both the single metals and the metal mixtures. The effective concentration inhibiting 50% enzyme activity (EC₅₀) estimates for single Cu (2.1–160.7 mmol kg⁻¹) and Ni (12–272 mmol kg⁻¹) showed that those were the most toxic to both enzymes in both soils. For metal mixtures, response addition (RA) was more conservative in predicting metal effects compared to concentration addition (CA). For both additivity models, antagonism was observed except at lower concentrations (≤10,000 mg/kg) where synergism was observed. At higher concentrations (>10,000 mg/kg), free and CaCl₂ extractable Cu protected both enzymes against the toxicity of other metals in the mixture. The results suggest that assuming CA at concentrations less than EC₅₀ does not protect biogeochemical cycling of C and P. And Cu in soil may protect soil enzymes from other toxic metals and thus may have an overall positive role.
Mostrar más [+] Menos [-]The immobilization, plant uptake and translocation of cadmium in a soil-pakchoi (Brassica chinensis L.) system amended with various sugarcane bagasse-based materials Texto completo
2022
Liu, Guofei | Dai, Zhongmin | Tang, Caixian | Xu, Jianming
Many organic materials have been used to decrease heavy-metal bioavailability in soil via in-situ remediation due to its high efficiency and easy operation; meanwhile, cheap materials have also been pursued to decrease the cost of remediation. Agricultural wastes exhibit their potential in remediation materials due to their low cost; however, raw agricultural wastes have a low ability to immobilize heavy metals in soil. Attempts have been made to modify agricultural wastes to improve the efficiency of heavy-metal passivation. In this study, novel agricultural waste-based materials, raw sugarcane bagasse (SB), citric acid modified (SSB) and citric-acid/Fe₃O₄ modified (MSB) sugarcane bagasse at 0.5% and 1% addition rates, were compared for their effectiveness in soil Cd passivation and Cd accumulations in pakchoi plants in a 30-day pot experiment. The addition of SB did not decrease soil bioavailable Cd effectively and slightly decreased Cd accumulation in plant roots and leaves. In comparison, SSB and MSB exhibited a great potential to decrease the transformation, translocation and accumulation of Cd with the decrease being greater at 1% than 0.5% rate in the soil-pakchoi system. For example, the addition of SSB and MSB at 0.5% decreased the concentration of Cd in leaves by 10%, and 16%, and at 1% decreased the concentration by 25% and 30%, respectively. High pH and abundant functional groups of three amendments played important roles in Cd immobilization. The enhanced microbial activities might also contribute to Cd passivation. However, plant growth was decreased in the amended treatments except SSB at 0.5% rate. The results suggest that citric-acid-modified sugarcane bagasse at addition rate of 0.5% has a potential to immobilize Cd in soil and decrease Cd accumulation in edible part of pakchoi effectively without decreasing vegetable growth.
Mostrar más [+] Menos [-]Potential health risk caused by heavy metal associated with seafood consumption around coastal area Texto completo
2022
Pandion, Kumar | Khalith, S.B Mohamed | Ravindran, Balasubramani | Chandrasekaran, Murugesan | Rajagopal, Rajakrishnan | Alfarhan, Ahmed | Chang, Soon Woong | Ayyamperumal, Ramamoorthy | Mukherjee, Amitava | Arunachalam, Kantha Deivi
The current study investigated seasonal fluctuations in diversity of fish and heavy metal concentrations in coastal areas, as well as the possible human health risks associated by the heavy metals (Mercury, Lead, Chromium, Cadmium, Copper and Zinc). From five different locations across the coastal area, 44 finfish species from 11 orders and 33 families were collected. Four finfish species such as Mugil cephalus, Lates calcarifer, Etroplus suratensis, and Chanos chanos were used to estimate and assess the heavy metal concentrations based on abundance and distribution across coastal area. Results revealed that the metal concentration in these fish species, water, and sediment were all found to be significantly comparable. During the southwest monsoon season, the highest concentrations of metals were found in Chanos chanos, Mugil cephalus, and Lates calcarifer. A hazard index and a target hazard quotient were calculated to determine the human-related health risk. Except for Hg and Cd in children, the anthropological health hazard assessment revealed that most element exposure doses are safe for both children and adults.
Mostrar más [+] Menos [-]Stable immobilization of uranium in iron containing environments with microbial consortia enriched via two steps accumulation method Texto completo
2022
Zhu, Yuling | Sheng, Yating | Liu, Yuxin | Chen, Jiemin | He, Xiaoyun | Wang, Wenzhong | Hu, Baowei
The stable stabilization of uranium (U) in iron (Fe) containing environments is restricted by the reoxidation of UO₂. In the current study, based on air reoxidation tests, we propose a novel two steps accumulation method to enrich microbial consortia from paddy soil. The constructed microbial consortia, denoted as the Fe–U bacteria, can co-precipitate U and Fe to form stable Fe–U solids. Column experiments running for 4 months demonstrated the production of U(IV)–O–Fe(II) precipitates containing maximum of 39.51% uranium in the presence of Fe–U bacteria. The reoxidation experiments revealed the U(IV)–O–Fe(II) precipitates were more stable than UO₂. 16S rDNA high throughput sequencing analysis demonstrated that Acinetobacter and Stenotrophomonas were responsible for Fe and U precipitation, while, Caulobacteraceae and Aminobacter were crucial for the formation of U(VI)-PO₄ chemicals. The proposed two steps accumulation method has an extraordinary application potential in stable immobilization of uranium in iron containing environments.
Mostrar más [+] Menos [-]Interaction between arsenic metabolism genes and arsenic leads to a lose-lose situation Texto completo
2022
Zhou, Meng | Liu, Zishu | Zhang, Baofeng | Yang, Jiawen | Hu, Baolan
Microorganisms are essential for modifying arsenic morphology, mobility, and toxicity. Still, knowledge of the microorganisms responsible for arsenic metabolism in specific arsenic-contaminated fields, such as metallurgical plants is limited. We sampled on-field soils from three depths at 70 day intervals to explore the distribution and transformation of arsenic in the soil. Arsenic-metabolizing microorganisms were identified from the mapped gene sequences. Arsenic metabolism pathways were constructed with metagenomics and AsChip analysis (a high-throughput qPCR chip for arsenic metabolism genes). It has been shown in the result that 350 genera of arsenic-metabolizing microorganisms carrying 17 arsenic metabolism genes in field soils were identified, as relevant to arsenic reduction, arsenic methylation, arsenic respiration, and arsenic oxidation, respectively. Arsenic reduction genes were the only genes shared by the 10 high-ranking arsenic-metabolizing microorganisms. Arsenic reduction genes (arsABCDRT and acr3) accounted for 73.47%–78.11% of all arsenic metabolism genes. Such genes dominated arsenic metabolism, mediating the reduction of 14.11%–19.86% of As(V) to As(III) in 0–100 cm soils. Arsenic reduction disrupts microbial energy metabolism, DNA replication and repair and membrane transport. Arsenic reduction led to a significant decrease in the abundance of 17 arsenic metabolism genes (p < 0.0001). The critical role of arsenic-reducing microorganisms in the migration and transformation of arsenic in metallurgical field soils, was emphasized with such results. These results were of pronounced significance for understanding the transformation behavior of arsenic and the precise regulation of arsenic in field soil.
Mostrar más [+] Menos [-]Multifunctional β-Cyclodextrin-EDTA-Chitosan polymer adsorbent synthesis for simultaneous removal of heavy metals and organic dyes from wastewater Texto completo
2022
Verma, Monu | Lee, Ingyu | Hong, Youngmin | Kumar, Vinod | Kim, Hyunook
Heavy metals and organic dyes are the major source of water pollution. Herein, a trifunctional β−cyclodextrin−ethylenediaminetetraacetic acid−chitosan (β−CD−EDTA−CS) polymer was synthesized using an easy and simple chemical route by the reaction of activated β−CD with CS through EDTA as a cross-linker (amidation reaction) for the removal of inorganic and organic pollutants from aqueous solution under different parameters such as pH, time effect, initial concentration, reusability, etc. The synthesized adsorbent was characterized using powder X-ray diffraction, Fourier transform infrared spectroscopy, field scanning electron microscopy, energy dispersive spectroscopy, Brunauer-Emmett-Teller (BET), thermogravimetric analyzer techniques to investigate their structural, functional, morphological, elemental compositions, surface area and thermal properties, respectively. Two types of heavy metals, i.e., mercury (Hg²⁺) and cadmium (Cd²⁺), and three organic dyes, i.e., methylene blue (MB), crystal violet (CV) and safranin O (SO) were chosen as inorganic and organic pollutants, respectively, to study the adsorption capacity of β-CD-EDTA-CS in aqueous solution. The β-CD-EDTA-CS shows monolayer adsorption capacity 346.30 ± 14.0 and 202.90 ± 13.90 mg g⁻¹ for Hg²⁺ and Cd²⁺, respectively, and a heterogeneous adsorption capacity 107.20 ± 5.70, 77.40 ± 5.30 and 55.30 ± 3.60 mg g⁻¹ for MB, CV and SO, respectively. Kinetics results followed pseudo-second order (PSO) kinetics behavior for both metal ions and dyes, and higher rate constants values (0.00161–0.00368 g mg⁻¹ min⁻¹) for dyes confirmed the cavitation of organic dyes (physisorption). In addition, we have also demonstrated the performance of β-CD-EDTA-CS for the of four heavy metals Hg²⁺, Cd²⁺, Ni²⁺, and Cu²⁺ and three dyes MB, CV, and SO in secondary treated wastewater. Findings of this study indicate that β-CD-EDTA-CS simple and essay to synthesize and can be use in wastewater treatment.
Mostrar más [+] Menos [-]Fluoride exposure cause colon microbiota dysbiosis by destroyed microenvironment and disturbed antimicrobial peptides expression in colon Texto completo
2022
Zhu, Shi-quan | Liu, Jing | Han, Bo | Zhao, Wen-peng | Zhou, Bian-hua | Zhao, Jing | Wang, Hong-wei
Colon microenvironment and microbiota dysbiosis are closely related to various human metabolic diseases. In this study, a total of 72 healthy female mice were exposed to fluoride (F) (0, 25, 50 and 100 mg/L F⁻) in drinking water for 70 days. The effect of F on intestinal barrier and the diversity and composition in colon microbiota have been evaluated. Meanwhile, the relationship among F-induced colon microbiota alterations and antimicrobial peptides (AMPs) expression and short-chain fatty acids (SCFAs) level also been assessed. The results suggested that F decreased the goblet cells number and glycoprotein expression in colon. And further high-throughput 16S rRNA gene sequencing result demonstrated that F exposure induced the diversity and community composition of colonic microbiota significantly changes. Linear Discriminant Analysis Effect Size (LEfSe) analysis identified 11 predominantly characteristic taxa which may be the biomarker in response to F exposure. F-induced intestinal microbiota perturbations lead to the significantly decreased SCFAs levels in colon. Immunofluorescence results showed that F increased the protein expression of interleukin-17A (IL-17A) and IL-22 (P < 0.01) and disturbed the expression of interleukin-17 receptor A (IL-17RA) and IL-22R (P < 0.05 or P < 0.01). In addition, the increased expression of IL-17A and IL-22 cooperatively enhanced the mRNA expression of AMPs which response to F-induced microbiota perturbations. Collectively, destroyed microenvironment and disturbed AMPs are the primary reason of microbiota dysbiosis in colon after F exposure. Colonic homoeostasis imbalance would be helpful for finding the source of F-induced chronic systemic diseases.
Mostrar más [+] Menos [-]