Refinar búsqueda
Resultados 771-780 de 7,240
Spatial trends of trace elements bioaccumulation in the most endangered dolphin from the Southwestern Atlantic Ocean: The franciscana (Pontoporia blainvillei)
2022
Vannuci-Silva, M. | Manhães, B.M.R. | Guari, E.B. | Botta, S. | Colosio, A.C. | Barbosa, L.A. | Bertozzi, C.P. | Azevedo, A.F. | Cunha, H.A. | Bisi, T.L. | Lailson-Brito, J.
Trace elements bioaccumulation patterns can be an important tool to assess differences among cetaceans’ populations. In this work, their use as potential chemical markers to differentiate franciscanas (Pontoporia blainvillei) populations was evaluated. Franciscanas were collected from three states in southeastern Brazil, which comprise three different Franciscana Management Areas (FMAs): Espírito Santo (FMA Ia), southern Rio de Janeiro (FMA IIa), and central São Paulo (FMA IIb). The concentrations of As, Cd, Cu, Fe, Hg, Mn and Zn were determined in the muscle, liver and kidney of the animals. Cadmium was the most valuable chemical marker to differentiate stocks, separating at least FMA IIa from the others. The higher Cd levels in FMA IIa, along with dietary information, indicate that the predominant consumption of cephalopods by this population is the main reason for the differences found. Additionally, environmental characteristics of the areas should also be considered as divergent sources of trace elements. Our findings suggest that non-essential trace elements, such as Cd, can be successful markers to differentiate populations. The Mn concentrations in FMA Ia raised concern and must be carefully monitored, as well as other elements that compose the iron ore tailings that have impacted the Espírito Santo coastal area. Additionally, this is the first study to report trace element concentration in the franciscanas from FMA IIa (southern Rio de Janeiro). Trace element concentrations found in franciscanas may represent different contamination levels in their preys and environments, which might pose specific threats to distinct populations. Therefore, our findings are important to characterize and differentiate franciscana populations and to guide precise management and conservation actions for the distinct stocks of this endangered species.
Mostrar más [+] Menos [-]Derivation of copper water quality criteria in the Bohai Sea of China considering the effects of multiple environmental factors on copper toxicity
2022
Li, Yang | Mu, Di | Wu, Hong-Qing | Tan, Dan-Dan | Liu, Xian-Hua | Sun, Jun | Ji, Zhi-Yong
Copper has become one of the most important heavy metal pollutants in the environment because of its wide application and high toxicity, but research on water quality criteria (WQCs) on copper is limited, especially the derivation of seawater WQC. In addition, the toxicity of copper in the seawater system is affected by various environmental factors. Therefore, establishing a WQC that meets the characteristics of the regional environment is a top priority. The correlations between four factors of temperature, salinity, pH, dissolved organic carbon (DOC) and the toxic effect values of copper were analyzed in this study, and the temperature was determined as the most influential factor among the four factors in the Bohai Sea. A specific correlation between temperature and the toxic effects of copper was identified, and WQCs were derived based on the identified correlation and the variations of the Bohai Sea's temperature in different seasons by species sensitivity distribution (SSD) method. Under the condition of the winter, spring, autumn, and summer with an average water temperature of 0.09, 15.96, 17.83, and 24.87 °C, the obtained short-term water quality criteria (SWQCs) were 44.29, 4.70, 4.31, and 3.33 μg/L; the long-term water quality criteria (LWQCs) were 18.14, 1.93, 1.77 and 1.36 μg/L. The findings indicated the importance of introducing specific environmental conditions during the derivation process. This work could provide valuable information for pollution prevention and aquatic life protection in the Bohai Sea and provide a valuable reference for the derivation of criteria in other regions alike.
Mostrar más [+] Menos [-]PM2.5 induces the distant metastasis of lung adenocarcinoma via promoting the stem cell properties of cancer cells
2022
Pan, Junyi | Xue, Yueguang | Li, Shilin | Wang, Liuxiang | Mei, Jie | Ni, Dongqi | Jiang, Jipeng | Zhang, Meng | Yi, Shaoqiong | Zhang, Rong | Ma, Yongfu | Liu, Yang | Liu, Ying
Lung cancer is the most common cancer in China and second worldwide, of which the incidence of lung adenocarcinoma is rising. As an independent factor, air pollution has drawn the attention of the public. An increasing body of studies has focused on the effect of PM₂.₅ on lung adenocarcinoma; however, the mechanism remains unclear. We collected the PM₂.₅ in two megacities, Beijing (BPM) and Shijiazhuang (SPM), located in the capital of China, and compared the different components and sources of PM₂.₅ in the two cities. Vehicle emissions are the primary sources of BPM, whereas SPM is industrial emissions. We found that chronic exposure to PM₂.₅ promotes the tumorigenesis and metastasis of lung adenocarcinoma in patient-derived xenograft (PDX) models, as well as the migration and invasion of lung adenocarcinoma cell lines. SPM has more severe effects in vivo and in vitro. The underlying mechanisms are related to the stem cell properties of cancer cells, the epithelial-mesenchymal transition (EMT) process, and the corresponding miRNAs. It is hopeful to provide a theoretical basis for improving air pollution in China, especially in the capital area, and is of the significance of long-term survival of lung cancer patients.
Mostrar más [+] Menos [-]Effect of micro-aerobic conditions based on semipermeable membrane-covered on greenhouse gas emissions and bacterial community during dairy manure storage at industrial scale
2022
Fang, Zhen | Zhou, Ling | Liu, Ya | Xiong, Jinpeng | Su, Ya | Lan, Zefeng | Han, Lujia | Huang, Guangqun
This study evaluated the greenhouse gas emissions of solid dairy manure storage with the micro-aerobic group (MA; oxygen concentration <5%) and control group (CK; oxygen concentration <1%), and explained the difference in greenhouse gas emissions by exploring bacterial community succession. The results showed that the MA remained the micro-aerobic conditions, which the maximum and average oxygen concentrations were 4.1% and 1.9%, respectively; while the average oxygen concentrations of the CK without intervention management was 0.5%. Compared with the CK, carbon dioxide and methane emissions in MA were reduced by 78.68% and 99.97%, respectively, and nitrous oxide emission was increased by almost three times with a small absolute loss, but total greenhouse gas emissions decreased by 91.23%. BugBase analysis showed that the relative abundance of aerobic bacteria in CK decreased to 0.73% on day 30, while that in MA increased to 6.56%. Genus MBA03 was significantly different between the two groups (p < 0.05) and was significantly positively correlated with carbon dioxide and methane emissions (p < 0.05). A structural equation model also revealed that the oxygen concentration and MBA03 of the MA had significant direct effects on methane emission rate (p < 0.001). The research results could provide theoretical basis and measures for directional regulation of greenhouse gas emission reduction during dairy manure storage.
Mostrar más [+] Menos [-]Roles of hemocyte subpopulations in silver nanoparticle transformation and toxicity in the oysters Crassostrea hongkongensis
2022
Luo, Yali | Wang, Wen-Xiong
Hemocytes are the main immune cells in bivalve mollusks and one of the sensitive targets for nanoparticle toxicity. Bivalve hemocytes consist of multiple functional heterogeneous cell types, but their different roles in immune system against foreign particles remain largely unknown. In order to clarify the different immune responses of hemocyte subpopulations to silver nanoparticles (AgNPs) and Ag ions, in this study, the Hong Kong oyster (Crassostrea hongkongensis) hemocytes were employed and separated into three subpopulations based on their cell size and granularity, including agranulocytes (R1), semigranulocytes (R2), and granulocytes (R3). We first demonstrated that AgNPs could rapidly enter into the oyster hemocytes within 3 h by phagocytosis process and resulted in different immune responses in hemocyte subpopulations. The most affected cell subtype by AgNPs was the granulocytes, followed by semigranulocytes, whereas agranulocytes were not affected following exposure to AgNPs. Interestingly, AgNPs induced the granule formation in semigranulocytes and further increased the proportion of granulocytes, whereas their ionic counterparts had no such effects on hemocyte composition, indicating the different detoxification mechanisms for nanoparticulate and ionic form. Following AgNP exposure, the dissolved Ag ions were accumulated in lysosomes and caused lysosomal dysfunction, indicating that lysosomes were the main targets for AgNP toxicity and the dissolved Ag ions were the main contributor of AgNP toxicity. Furthermore, AgNP exposure induced reactive oxygen production and impeded the lysosome function and phagocytosis in granulocytes, with impaired immunity system in oysters. Our study identified the different immune responses of oyster hemocyte subpopulations to AgNPs based on the in vitro short-term exposure assays, which may be applied to rapidly evaluate the ecotoxicological risks of different nanoparticles in aquatic systems.
Mostrar más [+] Menos [-]Transport and partitioning of metals in river networks of a plain area with sedimentary resuspension and implications for downstream lakes
2022
Zhang, Jin | Wang, Kun | Yi, Qitao | Zhang, Tao | Shi, Wenqing | Zhou, Xuefei
This study showed that metal transport and partitioning are primarily controlled by suspended solids with seasonal flow regimes in plain river networks with sedimentary resuspension. Eight metal species containing iron (Fe), manganese (Mn), cadmium (Cd), chrome (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn), in multiple phases of sediments, suspended solids (>0.7 μm), colloids (1 nm-0.7 μm) and dissolved phase (<1 nm) were analysed to characterize their temporal-spatial patterns, partitioning and transport on a watershed scale. Metal concentrations were associated with suspended solids in the water column and decreased from low flow to high flow. However, metal partitioning between particulate phase (suspended solids) and dissolvable phases (colloids and dissolved phase) was reversed and increased from low flow to high flow with decreased concentration of total suspended solids and median particle size. Partition coefficients (kₚ) showed differences among metal species, with higher values for Pb (354.3–649.0 L/g) and Cr (54.2–223.7 L/g) and lower values for Zn (2.5–25.2 L/g) and Cd (17.3–21.0 L/g). Metal concentrations in sediments increased by factors of 1.2–3.0 from upstream to downstream in watersheds impacted by urbanization. The behaviours of metals in rivers provide deeper insight into the ecological risks they pose for downstream lakes, where increased redox potential and organic matter may increase metal mobility due to algal blooms. Areas with heavy pollution of metals and the transport routines of metals in the river networks were also revealed in our research.
Mostrar más [+] Menos [-]Ignored effects of phosphite (P+III) on the growth responses of three typical algae species
2022
Han, Chao | Ren, Jinghua | Wang, Baoying | Wang, Zhaode | Yin, Hongbin | Ke, Fan | Xu, Di | Zhang, Lei | Si, Xiaoxia | Shen, Qiushi
Nowadays, the ubiquitous distribution and increasing abundance of P⁺ᴵᴵᴵ in waterbodies have caused serious concerns regarding its bioavailability and potential toxicity. However, our knowledge on these issues is relatively limited. We addressed previously unknown effects of P⁺ᴵᴵᴵ on three dominate algae species i.e. Microcystic aeruginosa (M. aeruginosa), Chlorella pyrenoidesa (C. pyrenoidesa) and Cyclotella. sp in eutrophic waterbodies in China. Remarkable declines in biomass, specific growth rate and Chl-a of algae cells treated with 0.01–0.7 mg/L P⁺ᴵᴵᴵ as sole or an alternative P source were observed, indicating P⁺ᴵᴵᴵ had an inhibitory effect on the algal growth. Besides, the intracellular enzyme activities e.g superoxide dismutase (SOD) and malondialdehyde (MDA) were significantly increased with P⁺ᴵᴵᴵ stress. M. aeruginosa and Cyclotella. sp cells seemed to be more sensitive to P⁺ᴵᴵᴵ toxicity than C. pyrenoidesa since cell membrane suffered more serious stress and destruction. These findings combined, it confirmed P⁺ᴵᴵᴵ could not be utilized as bioavailable P, but had certain toxicity to the tested algae. It indicated that the increased P⁺ᴵᴵᴵ abundance in eutrophic waterbodies would accelerate the algal cell death, which could have a positive effect against algal blooms. Our results provide new insights into assessing the ecological risks of P⁺ᴵᴵᴵ in aquatic environments.
Mostrar más [+] Menos [-]Modeling exposure to airborne metals using moss biomonitoring in cemeteries in two urban areas around Paris and Lyon in France
2022
Lequy, Emeline | Meyer, Caroline | Vienneau, Danielle | Berr, Claudine | Goldberg, Marcel | Zins, Marie | Leblond, Sébastien | de Hoogh, Kees | Jacquemin, Bénédicte
Exposure of the general population to airborne metals remains poorly estimated despite the potential health risks. Passive moss biomonitoring can proxy air quality at fine resolution over large areas, mainly in rural areas. We adapted the technique to urban areas to develop fine concentration maps for several metals for Constances cohort's participants. We sampled Grimmia pulvinata in 77 and 51 cemeteries within ∼50 km of Paris and Lyon city centers, respectively. We developed land-use regression models for 14 metals including cadmium, lead, and antimony; potential predictors included the amount of urban, agricultural, forest, and water around cemeteries, population density, altitude, and distance to major roads. We used both kriging with external drift and land use regression followed by residual kriging when necessary to derive concentration maps (500 × 500 m) for each metal and region. Both approaches led to similar results. The most frequent predictors were the amount of urban, agricultural, or forest areas. Depending on the metal, the models explained part of the spatial variability, from 6% for vanadium in Lyon to 84% for antimony in Paris, but mostly between 20% and 60%, with better results for metals emitted by human activities. Moss biomonitoring in cemeteries proves efficient for obtaining airborne metal exposures in urban areas for the most common metals.
Mostrar más [+] Menos [-]Inequalities in occupational exposures among people using popular commute modes
2022
Patra, Arpan | Phuleria, Harish C.
Several recent studies have looked into the differences in air qualities inside popular commute modes. The impact of daily commuting patterns and work-related trips on inhalation doses, however, are not investigated. The purpose of this study is to quantify the variation in air pollutants within popular commute modes in Mumbai, India, and to estimate the variation in exposure as a result of occupational or work-related trips across different sub-groups. Real-time pollutants, both gaseous and particulate matters (PM), were measured on a pre-defined route during rush and non-rush hours on buses, cars, auto-rickshaws, sub-urban trains, and motorbikes through several trips (N = 98). Household surveys were conducted to estimate the exposures of different occupational subgroups (cab-driver, auto-rickshaw drivers, delivery persons) and people commuting to their offices daily. Participants (N = 800) from various socioeconomic backgrounds in the city were asked about their job categories, work-activity patterns, and work-related commute trips. Mass concentrations of particles in different size ranges (PM₁, PM₂.₅, and PM₁₀) were substantially higher (p < 0.05) inside auto-rickshaws (44.6 μg/m³, 84.7 μg/m³, and 138.3 μg/m³) compared to other modes. Inside cars, gaseous pollutants such as carbon monoxide (CO) and total volatile organic compounds (TVOC) were significantly higher (p < 0.05). Although both gaseous and particulate concentrations were lower (p < 0.05) inside buses, bus-commuters were found to be highly exposed to the pollutants due to the extended trip time (∼1.2 times longer than other modes) and driving conditions. Office commuters inhale a large fraction of their daily doses (25–30%) during their work-related travel. Occupational sub-groups, on the other hand, inhale ∼90% of the pollutants during their work. In a day, an auto-rickshaw driver inhales 10–15% more (p < 0.05) pollutants than cab driver or delivery personnel. Therefore, this study highlights the inequalities in occupational exposure as a combined effect of in-cabin air qualities and commute patterns due to occupational obligations.
Mostrar más [+] Menos [-]Nanobiochar-rhizosphere interactions: Implications for the remediation of heavy-metal contaminated soils
2022
Zhang, Xiaokai | Wells, Mona | Niazi, Nabeel Khan | Bolan, Nanthi | Shaheen, Sabry | Hou, Deyi | Gao, Bin | Wang, Hailong | Rinklebe, Jörg | Wang, Zhenyu
Soil heavy metal contamination has increasingly become a serious environmental issue globally, nearing crisis proportions. There is an urgent need to find environmentally friendly materials to remediate heavy-metal contaminated soils. With the continuing maturation of research on using biochar (BC) for the remediation of contaminated soil, nano-biochar (nano-BC), which is an important fraction of BC, has gradually attracted increasing attention. Compared with BC, nano-BC has unique and useful properties for soil remediation, including a high specific surface area and hydrodynamic dispersivity. The efficacy of nano-BC for immobilization of non-degradable heavy-metal contaminants in soil systems, however, is strongly affected by plant rhizosphere processes, and there is very little known about the role that nano-BC play in these processes. The rhizosphere represents a dynamically complex soil environment, which, although having a small thickness, drives potentially large materials fluxes into and out of plants, notably agricultural foodstuffs, via large diffusive gradients. This article provides a critical review of over 140 peer-reviewed papers regarding nano-BC-rhizosphere interactions and the implications for the remediation of heavy-metal contaminated soils. We conclude that, when using nano-BC to remediate heavy metal-contaminated soil, the relationship between nano-BC and rhizosphere needs to be considered. Moreover, the challenges to extending our knowledge regarding the environmental risk of using nano-BC for remediation, as well as further research needs, are identified.
Mostrar más [+] Menos [-]