Refinar búsqueda
Resultados 921-930 de 4,937
Metabolomics analysis of a mouse model for chronic exposure to ambient PM2.5 Texto completo
2019
Xu, Yanyi | Wang, Wanjun | Zhou, Ji | Chen, Minjie | Huang, Xingke | Zhu, Yaning | Xie, Xiaoyun | Li, Weihua | Zhang, Yuhao | Kan, Haidong | Ying, Zhekang
Chronic ambient fine particulate matter (PM₂.₅) exposure correlates with various adverse health outcomes. Its impact on the circulating metabolome−a comprehensive functional readout of the interaction between an organism's genome and environment−has not however been fully understood. This study thus performed metabolomics analyses using a chronic PM₂.₅ exposure mouse model. C57Bl/6J mice (female) were subjected to inhalational concentrated ambient PM₂.₅ (CAP) or filtered air (FA) exposure for 10 months. Their sera were then analyzed by liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). These analyses identified 2570 metabolites in total, and 148 of them were significantly different between FA- and CAP-exposed mice. The orthogonal partial least-squares discriminant analysis (OPLS-DA) and heatmap analyses displayed evident clustering of FA- and CAP-exposed samples. Pathway analyses identified 6 perturbed metabolic pathways related to amino acid metabolism. In contrast, biological characterization revealed that 71 differential metabolites were related to lipid metabolism. Furthermore, our results showed that CAP exposure increased stress hormone metabolites, 18-oxocortisol and 5a-tetrahydrocortisol, and altered the levels of circadian rhythm biomarkers including melatonin, retinal and 5-methoxytryptophol.
Mostrar más [+] Menos [-]Associations of chemical composition and sources of PM2.5 with lung function of severe asthmatic adults in a low air pollution environment of urban Nagasaki, Japan Texto completo
2019
Ng, Chris Fook Sheng | Hashizume, Masahiro | Obase, Yasushi | Doi, Masataka | Tamura, Kei | Tomari, Shinya | Kawano, Tetsuya | Fukushima, Chizu | Matsuse, Hiroto | Chung, Yeonseung | Kim, Yoonhee | Kunimitsu, Kenichi | Kohno, S. (Shigeo) | Mukae, Hiroshi
Previous studies have linked ambient PM₂.₅ to decreased pulmonary function, but the influence of specific chemical elements and emission sources on the severe asthmatic is not well understood. We examined the mass, chemical constituents, and sources of PM₂.₅ for short-term associations with the pulmonary function of adults with severe asthma in a low air pollution environment in urban Nagasaki, Japan. We recruited 35 asthmatic adults and obtained the daily record of morning peak expiratory flow (PEF) in spring 2014–2016. PM₂.₅ filters were extracted from an air quality monitoring station (178 days) and measured for 27 chemical elements. Source apportionment was performed using Positive Matrix Factorization (PMF). We fitted generalized linear model with generalized estimating equation (GEE) method to estimate changes in PEF (from personal monthly maximum) and odds of severe respiratory deterioration (first ≥ 15% PEF reduction within a 1-week interval) associated with mass, constituents, and sources of PM₂.₅, with adjustment for temperature and relative humidity. Constituent sulfate (SO₄²⁻) and PM₂.₅ from oil combustion and traffic were associated with reduced PEF. An interquartile range (IQR) increase in SO₄²⁻ (3.7 μg/m³, average lags 0–1) was associated with a decrease of 0.38% (95% confidence interval = −0.75% to −0.001%). An IQR increase in oil combustion and traffic-sourced PM₂.₅ (2.64 μg/m³, lag 1) was associated with a decrease of 0.33% (−0.62% to −0.002%). We found a larger PEF decrease associated with PM₂.₅ from dust/soil on Asian Dust days. There was no evidence linking total mass and metals to reduced pulmonary function. The ventilatory capacity of adults with severe asthma is susceptible to specific constituents/sources of PM₂.₅ such as sulfate and oil combustion and traffic despite active self-management of asthma and low air pollution levels in the study location.
Mostrar más [+] Menos [-]Substantially higher concentrations of mercury are detected in airborne particulate matter when using a preservation agent during sample preparation steps Texto completo
2019
Budanovic, Maja | Tessensohn, Malcolm E. | Webster, Richard D.
Inductively coupled plasma – mass spectrometry (ICP-MS) analysis of airborne particulate bound mercury was carried out utilizing a high sulfur containing organic compound as a preservation agent to limit the negative bias that affects the determination of low levels of mercury. Between 600% and 1000% more Hg was detected with the use of the additive, lithium tetrathiafulvalene carboxylate (LiCTTF), during the microwave assisted acid digestion sample processing step without influencing the determination of other trace elements. The average Hg concentration was 0.05 ng m⁻³ and 0.4 ng m⁻³ in the absence and presence of LiCTTF, respectively. Stabilization of the mercury ions with the preservation agent resulted in higher precision for ICP-MS measurements with relative standard deviation (RSD) values ranging from 1.07% to 4.36%. The results obtained in this study emphasize the necessity of using a preservation agent in the atomic spectroscopic determination of mercury to prevent losses and is especially critical in low-level analyses such as those routinely performed in environmental mercury pollution trend assessments.
Mostrar más [+] Menos [-]Ecological risks of insecticide contamination in water and sediment around off-farm irrigated rice paddy fields Texto completo
2019
Furihata, Shunsuke | Kasai, Atsushi | Hidaka, Kazumasa | Ikegami, Makihiko | Ohnishi, Hitoshi | Goka, Koichi
The ecological impacts of insecticides in aquatic areas around agricultural lands have long been ignored in the regulation scheme of pesticides in Japan. Upon the scheme, the predicted concentration of an insecticide in the main stream of a river is the only parameter considered, suggesting that the ecological impacts of insecticides on local biodiversity around agricultural fields are underestimated. To fill this knowledge gap, we measured insecticide concentrations in surface water and sediment in aquatic areas around paddy fields at 35 locations across Japan. Among the 18 insecticides considered, 15 were detected somewhere in Japan and their concentrations were generally higher in the southwestern region in Japan (e.g. Hiroshima, Saga, or Kagoshima prefectures). Most insecticides were accumulated at higher concentrations in sediment than in surface water, consistent with previous studies. We also detected insecticides applied to nursery boxes at high concentrations in surrounding aquatic areas, although such application is generally considered to have low environmental risks. In addition, derivatives of fipronil, which have similar toxicity as that of fipronil, were often detected in sediment at higher concentrations than fipronil itself. Concentrations of dinotefuran in water at two sampling points were higher than the 5% hazardous concentration (HC5), indicating a possibility of a risk of acute toxicity to aquatic organisms. Our findings indicate that ecological risk assessments of insecticides and their derivatives should be expanded to include concentrations in sediment and water around paddy fields as well.
Mostrar más [+] Menos [-]Assessment of sperm DNA integrity within the Palaemon longirostris (H. Milne-Edwards, 1837) population of the Seine estuary Texto completo
2019
Erraud, Alexandre | Bonnard, Marc | Geffard, Olivier | Chaumot, Arnaud | Duflot, Aurélie | Geffard, Alain | Forget-Leray, Joëlle | Xuereb, Benoit
Assessment of sperm DNA integrity within the Palaemon longirostris (H. Milne-Edwards, 1837) population of the Seine estuary Texto completo
2019
Erraud, Alexandre | Bonnard, Marc | Geffard, Olivier | Chaumot, Arnaud | Duflot, Aurélie | Geffard, Alain | Forget-Leray, Joëlle | Xuereb, Benoit
The interpretation of biomarkers in natura should be based on a referential of expected values in uncontaminated conditions. Nevertheless, to build a reference data set of biomarker responses in estuarine areas, which receive chronic pollution loads due to their transition position between continent and sea, is impossible. In this context, the aim of the present work was to propose the use of laboratory recovery period to define a baseline for the measurement of sperm DNA damage by Comet assay in the estuarine prawn Palaemon longirostris. For that, sperm DNA integrity was observed after both a passive (i.e. 20 days in a clean environment) and an active (i.e. forced renewal of spermatophores) recovery of wild P. longirostris specimens from the Seine estuary, in laboratory conditions. Then, the levels of sperm DNA damage recorded within the P. longirostris population of the Seine estuary, during six campaigns of sampling from April 2015 to October 2017, have been interpreted according to the defined threshold values. The results showed a persistence in the level of DNA damage after 20-day in clean environment with the passive recovery. This strategy was inconclusive to reach a baseline level but it revealed the lack of DNA repair mechanisms. For the active recovery, a decrease of 54% of the level of DNA damage has been observed after the first renewal of spermatophores and this level stabilized after the second renewal. On the basis of this second strategy, we defined a mean basal value of sperm DNA damage of 54.9 A.U. and a maximum threshold of 69.7 A.U. (i.e. 95 %CI). The analysis of the results using the reference value highlighted significant abnormal sperm DNA damage within the native population of P. longirostris from the Seine estuary on all stations during the six-sampling campaigns.
Mostrar más [+] Menos [-]Assessment of sperm DNA integrity within the Palaemon longirostris (H. Milne-Edwards, 1837) population of the Seine estuary Texto completo
2019
Erraud, Alexandre | Bonnard, Marc | Geffard, Olivier | Chaumot, Arnaud | Duflot, Aurélie | Geffard, Alain | Forget-Leray, Joëlle | Xuereb, Benoît | Stress Environnementaux et BIOsurveillance des milieux aquatiques (SEBIO) ; Institut National de l'Environnement Industriel et des Risques (INERIS)-Université de Reims Champagne-Ardenne (URCA)-Université Le Havre Normandie (ULH) ; Normandie Université (NU)-Normandie Université (NU)-SFR Condorcet ; Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS)-Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS) | RiverLy - Fonctionnement des hydrosystèmes ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | project ECOTONES - program Seine-Aval V (Public Interest Groups Seine-Aval) (SA5 QO 2014) | Research Federation CNRS 3730 SCALE | Normandy Region
[Departement_IRSTEA]Eaux [ADD1_IRSTEA]Systèmes aquatiques soumis à des pressions multiples | International audience | The interpretation of biomarkers in natura should be based on a referential of expected values in uncontaminated conditions. Nevertheless, to build a reference data set of biomarker responses in estuarine areas, which receive chronic pollution loads due to their transition position between continent and sea, is impossible. In this context, the aim of the present work was to propose the use of laboratory recovery period to define a baseline for the measurement of sperm DNA damage by Comet assay in the estuarine prawn Palaemon longirostris. For that, sperm DNA integrity was observed after both a passive (i.e. 20 days in a clean environment) and an active (i.e. forced renewal of spermatophores) recovery of wild P. longirostris specimens from the Seine estuary, in laboratory conditions. Then, the levels of sperm DNA damage recorded within the P. longirostris population of the Seine estuary, during six campaigns of sampling from April 2015 to October 2017, have been interpreted according to the defined threshold values. The results showed a persistence in the level of DNA damage after 20-day in clean environment with the passive recovery. This strategy was inconclusive to reach a baseline level but it revealed the lack of DNA repair mechanisms. For the active recovery, a decrease of 54% of the level of DNA damage has been observed after the first renewal of spermatophores and this level stabilized after the second renewal. On the basis of this second strategy, we defined a mean basal value of sperm DNA damage of 54.9 A.U. and a maximum threshold of 69.7 A.U. (i.e. 95 %CI). The analysis of the results using the reference value highlighted significant abnormal sperm DNA damage within the native population of P. longirostris from the Seine estuary on all stations during the six-sampling campaigns.
Mostrar más [+] Menos [-]Cigarette smoke induces ROS mediated autophagy impairment in human corneal epithelial cells Texto completo
2019
Miao, Qi | Xu, Yufeng | Zhang, Huina | Xu, Peifang | Ye, Juan
Cigarette smoke is an important indoor air pollutant which has deleterious effects on human health. Continued daily exposure to cigarette smoke has been attributed to the risk factor of ocular surface diseases. However, the mechanisms underlying the ocular surface damage are not fully elucidated. In this study, exposure to cigarette smoke extract (CSE) induced a dose- and time-dependent cytotoxicity in human corneal epithelial (HCE) cells, supported by the observation of reduced cell viability, increased apoptotic cells, elevated intracellular oxidative stress and loss of mitochondrial transmembrane potential. In addition, CSE exposure led to the impairment of proteostasis and autophagy, which resulted in the accumulation of ubiquitinated proteins as aggregates in peri-nuclear spaces. Furthermore, the autophagy inducer, cysteamine was shown to attenuate the CSE induced cell damage, oxidative stress and mitochondrial dysfunction in HCE cells. Moreover, cysteamine inhibited the formation of ubiquitin-positive aggregates around the peri-nuclear region, through regulating the autophagic activity of HCE cells. Similar to in vitro experiments, cigarette smoke induced proteostasis and autophagy impairment in corneal epithelial cells could be rescued by cysteamine in a cigarette smoke-exposed murine model. Therefore, this study may provide first evidence that dysfunction of autophagy contributes to the pathogenesis of ocular surface diseases associated with cigarette smoke exposure. Besides, it also suggests the potential therapeutic value of cysteamine in the prevention and treatment of cigarette smoke induced ocular surface injury.CSE induces cytotoxicity and accumulation of ubiquitinated proteins in HCE cells due to impairment of proteostasis and autophagy, which can be rescued by cysteamine.
Mostrar más [+] Menos [-]Cyclodextrin functionalized 3D-graphene for the removal of Cr(VI) with the easy and rapid separation strategy Texto completo
2019
Wang, Zhe | Lin, Fanyu | Huang, Liqin | Chang, Zhili | Yang, Bing | Liu, Shuang | Zheng, Maosheng | Lu, Yuexiang | Chen, Jing
As a useful heavy metal ion, chromium has seen its applications in various fields. While it is also a toxic contaminant in water and may cause serious threats to the environment and human health. To develop a novel material with good adsorption capacity and easy solid-liquid separation strategy was necessary and significant. In this paper, the β-cyclodextrin (β-CD) functionalized three-dimensional structured graphene foam (CDGF) was successfully synthesized with the facile and one-step hydrothermal method. The SEM, BET, XRD, FT-IR and XPS analysis were carried out and the results confirmed the successfully grafting of β-CD onto GF. The batch adsorption of Cr(VI) was also taken out and the CDGF possessed good selectivity compared with other metal ions at pH = 3. The adsorption capacity reduced gradually as the initial pH of the Cr(VI) solution grew higher, which was because the anionic species of Cr(VI) were partial to the positively charged surface of CDGF. The easy separation strategy of the CDGF was also demonstrated and the CDGF could be taken out easily with a tweezer after the adsorption of Cr(VI), which significantly simplified the separation procedure and reduced time. By comparing the FT-IR and XPD analysis results, the adsorption mechanism was explored and the hydroxyl groups on CDGF played the main role in the adsorption process. This work brings a novel material for the adsorption of Cr(VI) from water and provides an innovative direction for the easy and fast solid-liquid separation strategy in the adsorption and other application fields.
Mostrar más [+] Menos [-]Host bacterial community of MGEs determines the risk of horizontal gene transfer during composting of different animal manures Texto completo
2019
Zhu, Longji | Zhao, Yue | Yang, Kangjie | Chen, Jian | Zhou, Haixuan | Chen, Xiaomeng | Liu, Qi | Wei, Zimin
Mobile genetic elements (MGEs) play critical roles in transferring antibiotic resistance genes (ARGs) among different microorganisms in the environment. This study aimed to explore the fate of MGEs during chicken manure (CM) and bovine manure (BM) composting to assess horizontal transfer risks of ARGs. The results showed that the removal efficiency of MGEs during CM composting was significantly higher than that during BM composting, because the potential host bacteria of MGEs were eliminated largely during CM composting. Meanwhile, these potential host bacterial communities are significantly influenced by pH, NH4+, NO3− and total N, which can be used to regulate host bacterial communities to remove MGEs during composting. Projection pursuit regression further confirmed that composting can effectively reduce the horizontal transfer risk of ARGs, especially for CM composting. These results identified the critical roles of host bacterial communities in MGEs removal during composting of different animal manures.
Mostrar más [+] Menos [-]Ecotoxicology of silver nanoparticles and their derivatives introduced in soil with or without sewage sludge: A review of effects on microorganisms, plants and animals Texto completo
2019
Courtois, Pauline | Rorat, Agnieszka | Lemiere, Sébastien | Guyoneaud, Rémy | Attard, Eléonore | Levard, Clément | Vandenbulcke, Franck
Silver nanoparticles (AgNPs) are widely incorporated in many products, partly due to their antimicrobial properties. The subsequent discharge of this form of silver into wastewater leads to an accumulation of silver species (AgNPs and derivatives resulting from their chemical transformation), in sewage sludge. As a result of the land application of sewage sludge for agricultural or remediation purposes, soils are the primary receiver media of silver contamination. Research on the long-term impact of AgNPs on the environment is ongoing, and this paper is the first review that summarizes the existing state of scientific knowledge on the potential impact of silver species introduced into the soil via sewage sludge, from microorganisms to earthworms and plants. Silver species can easily enter cells through biological membranes and affect the physiology of organisms, resulting in toxic effects. In soils, exposure to AgNPs may change microbial biomass and diversity, decrease plant growth and inhibit soil invertebrate reproduction. Physiological, biochemical and molecular effects have been documented in various soil organisms and microorganisms. Negative effects on organisms of the dominant form of silver in sewage sludge, silver sulfide (Ag₂S), have been observed, although these effects are attenuated compared to the effects of metallic AgNPs. However, silver toxicity is complex to evaluate and much remains unknown about the ecotoxicology of silver species in soils, especially with respect to the possibility of transfer along the trophic chain via accumulation in plant and animal tissues. Critical points related to the hazards associated with the presence of silver species in the environment are described, and important issues concerning the ecotoxicity of sewage sludge applied to soil are discussed to highlight gaps in existing scientific knowledge and essential research directions for improving risk assessment.
Mostrar más [+] Menos [-]Spinosad-mediated effects in the post-embryonic development of Partamona helleri (Hymenoptera: Apidae: Meliponini) Texto completo
2019
Araujo, Renan dos Santos | Bernardes, Rodrigo Cupertino | Fernandes, Kenner Morais | Lima, Maria Augusta Pereira | Martins, Gustavo Ferreira | Tavares, Mara Garcia
The use of insecticides based on metabolites found in live organisms, such as the insecticide spinosad, has been an option for the control of agricultural pests because of the allegedly low toxicological risk for nontarget arthropods, such as stingless bees. In the current study, we evaluate the effects of chronic oral exposure to spinosad during the larval phase on survival, developmental time, body mass, midgut epithelial remodeling, and the peritrophic matrix (PM) of Partamona helleri stingless bee workers. Worker larvae that were raised in the laboratory were orally exposed to different concentrations (0, 6.53, 13.06, 32.64, and 3,264 ng. a.i. bee⁻¹) of spinosad (formulation), and the resulting survival, developmental time, and body mass were studied. The concentration of spinosad recommended for use in the field (3,264 ng. a.i. bee⁻¹) reduced the survival of workers during development. Also, sublethal concentrations of spinosad delayed the development and caused morphological changes in the midgut epithelium. Finally, the chronic exposure of larvae to 32.64 ng. a.i. bee⁻¹ spinosad also altered the remodeling of the midgut during metamorphosis and affected the organization of the PM of larvae, pupae, and adults. Our data suggest possible environmental risks for using spinosad in cultures that are naturally pollinated by stingless bees.
Mostrar más [+] Menos [-]