Refinar búsqueda
Resultados 921-930 de 7,921
Column versus batch methods for measuring PFOS and PFOA sorption to geomedia
2021
Van Glubt, Sarah | Brusseau, Mark L. | Yan, Ni | Huang, Dandan | Khan, Naima | Carroll, Kenneth C.
The objective of this study is to compare the consistency between column and batch experiment methods for measuring solid-phase sorption coefficients and isotherms for per and polyfluoroalkyl substances (PFAS). Perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are used as representative PFAS, and experiments are conducted with three natural porous media with differing geochemical properties. Column-derived sorption isotherms are generated by conducting multiple experiments with different input concentrations (multi-C₀ method) or employing elution-front integration wherein the entire isotherm is determined from a single breakthrough curve (BTC) elution front. The isotherms generated with the multi-C₀ column method compared remarkably well to the batch isotherms over an aqueous concentration range of 3–4 orders of magnitude. Specifically, the 95% confidence intervals for the individual isotherm variables overlapped, producing statistically identical regressions. The elution-front integration isotherms generally agreed with the batch isotherms, but exhibited noise and systematic deviation at lower concentrations in some cases. All data sets were well described by the Freundlich isotherm model. Freundlich N values ranged from 0.75 to 0.81 for PFOS and was 0.87 for PFOA and are consistent with values reported in the literature for different geomedia. The results of this study indicate that column and batch experiments can measure consistent sorption isotherms and sorption coefficients for PFOS and PFOA when robust experimental setup and data analysis are implemented.
Mostrar más [+] Menos [-]A bibliometric analysis of industrial wastewater treatments from 1998 to 2019
2021
Mao, Guozhu | Hu, Haoqiong | Liu, Xi | Crittenden, John | Huang, Ning
For the foreseeable future, industrial water demand will grow much faster than agriculture. The demand together with the urgency of wastewater treatment, will pose big challenges for most developing countries. We applied the bibliometric analysis combined with social network analysis and S-curve technique to quantitatively analyze 9413 publications related to industrial wastewater treatment in the Scientific Citation Index (SCI) and Social Sciences Citation Index (SSCI) databases from 1998 to 2019. The results showed that: (1) Publications on industrial wastewater treatment have increased from 120 in 1998 to 895 in 2019 with a steady annual increment rate, and researchers have focused more on the application and optimization of existing technologies. (2) China had the highest number of publications (n = 1651, 19.66% of global output) and was a core country in the international cooperation network, whereas the United States and European countries produced higher quality papers. (3) By analyzing the co-occurrence and clusters of keywords and comparing three wastewater treatment categories (physical, chemical, biological), adsorption (n = 1277), oxidation (n = 1085) and activated sludge process (n = 1288) were the top three techniques. Researchers have shifted their focus to treatment technologies for specific wastewater type, such as textile wastewater, pulp and paper wastewater, and pharmaceutical wastewater. The S-curve from articles indicates that physical and chemical treatment technologies are attached with great potential in the near future, especially adsorption and advanced oxidation, while the biological treatment technologies are approaching to the saturation stage. Different pattern is observed for the S-curve derived from patents, which stressed the limited achievement until now and further exploration in the field application for the three treatment categories. Our analysis provides information of technology development landscape and future opportunities, which is useful for decision makers and researchers who are interested in this area.
Mostrar más [+] Menos [-]Ecotoxicological effects of pyraclostrobin on tilapia (Oreochromis niloticus) via various exposure routes
2021
Li, Hong | Jing, Tongfang | Li, Tongbin | Huang, Xueping | Gao, Yangyang | Zhu, Jiamei | Lin, Jin | Zhang, Peng | Li, Beixing | Mu, Wei
Pyraclostrobin is a widely used and highly efficient fungicide that also has high toxicity to aquatic organisms, especially fish. Although some research has reported the toxic effects of pyraclostrobin on fish, the main toxic pathways of pyraclostrobin in fish remain unclear. The present study has integrated histopathological, biochemical and hematological techniques to reveal the main toxic pathways and mechanisms of pyraclostrobin under different exposure routes. Our results indicated that pyraclostrobin entered fish mainly through the gills. The highest accumulation of pyraclostrobin was observed in the gills and heart compared with accumulation in other tissues and gill tissue showed the most severe damage. Hypoxia symptoms (water jacking, tummy turning and cartwheel formation) in fish were observed throughout the experiment. Taken together, our results suggested that the gills are important target organs. The high pyraclostrobin toxicity to gills might be associated with oxidative damage to the gills, inducing alterations in ventilation frequency, oxygen-carrying substances in blood and disorders of energy metabolism. Our research facilitates a better understanding of the toxic mechanisms of pyraclostrobin in fish, which can promote the ecotoxicological research of agrochemicals on aquatic organisms.
Mostrar más [+] Menos [-]Brown carbon light absorption over an urban environment in northern peninsular Southeast Asia
2021
Pani, Shantanu Kumar | Lin, Neng-Huei | Griffith, Stephen M. | Chantara, Somporn | Lee, Chung-Te | Thepnuan, Duangduean | Tsai, Ying I.
Light-absorbing organic carbon (or brown carbon, BrC) has been recognized as a critical driver in regional-to-global climate change on account of its significant contribution to light absorption. BrC sources vary from primary combustion processes (burning of biomass, biofuel, and fossil fuel) to secondary formation in the atmosphere. This paper investigated the light-absorbing properties of BrC such as site-specific mass absorption cross-section (MACBᵣC), absorption Ångström exponent (AAEBᵣC), and the absorbing component of the refractive index (kBᵣC) by using light absorption measurements from a 7-wavelength aethalometer over an urban environment of Chiang Mai, Thailand in northern peninsular Southeast Asia (PSEA), from March to April 2016. The contribution of BrC to total aerosol absorption (mean ± SD) was 46 ± 9%, 29 ± 7%, 24 ± 6%, 20 ± 4%, and 15 ± 3% at 370, 470, 520, 590, and 660 nm, respectively, highlighting the significant influence of BrC absorption on the radiative imbalance over northern PSEA. Strong and significant associations between BrC light absorption and biomass-burning (BB) organic tracers highlighted the influence of primary BB emissions. The median MACBᵣC and kBᵣC values at 370 nm were 2.4 m² g⁻¹ and 0.12, respectively. The fractional contribution of solar radiation absorbed by BrC relative to BC (mean ± SD) in the 370–950 nm range was estimated to be 34 ± 7%, which can significantly influence the regional radiation budget and consequently atmospheric photochemistry. This study provides valuable information to understand BrC absorption over northern PSEA and can be used in model simulations to reassess the regional climatic impact with greater accuracy.
Mostrar más [+] Menos [-]Screening ecological risk of pesticides and emerging contaminants under data limited conditions – Case study modeling urban and agricultural watersheds with OrganoFate
2021
Parker, Nicol | Keller, Arturo A.
The increasing number of chemicals used by society requires accessible, easy to implement tools to perform screening-level ecological risk assessments. However, field data to calibrate and validate screening tools is challenging to obtain for many watersheds. Thus, the evaluation must be done under data limited conditions. Here we employ a fate and transport model, OrganoFate, to predict environmental concentrations of contaminants of emerging concern (CECs) as well as a number of pesticides. CECs evaluated include antibacterial compounds sulfamethoxazole and triclocarban and a flame-retardant tris(1,3-dichloro-2-propyl)phosphate (TDCPP). We also evaluated widely used pesticides chlorpyrifos, bifenthrin and esfenvalerate. We predict concentrations of the contaminants in high-risk watersheds which were dominated by either urban or agricultural development and have small aquatic compartments. Screening-level predictions were in good agreement with observed concentrations in surface water and sediment. Maximum predicted concentrations were close to the highest observed concentrations for CECs, only ~0.1 μg/L greater for sulfamethoxazole and triclocarban concentrations, and for TDCPP <5 μg/L higher. ChemFate was also employed to screen possible aquatic health impacts. Results demonstrated possible CEC aquatic health risk for TDCPP and triclocarban (risk quotients of 0.9 and 1.1 respectively). For pesticides, exceedance of effect (EC50) and lethal (LC50) endpoints was predicted for various taxonomic groups which include aquatic invertebrates, fish, amphibians, and benthic organisms.
Mostrar más [+] Menos [-]Polybrominated diphenyl ethers in serum from residents living in a brominated flame retardant production area: Occurrence, influencing factors, and relationships with thyroid and liver function
2021
Zhao, Xuezhen | Yang, Xiaodi | Du, Yinglin | Li, Renbo | Zhou, Tao | Wang, Yuwei | Chen, Tian | Wang, Dejun | Shi, Zhixiong
Polybrominated diphenyl ethers (PBDEs) have been used as flame retardants (FRs) in China for decades, even after they were identified as persistent organic pollutants. In this study, serum samples were collected from 172 adults without occupational exposure who were residents of a well-known FR production region (Laizhou Bay, north China), and PBDE congeners were measured to assess their occurrence, congener profile and influencing factors in serum. Moreover, the relationships between serum concentrations of PBDEs and thyroid/liver function indicators were analyzed to evaluate whether human exposure to PBDEs would lead to thyroid/liver injury. All 8 PBDE congeners were detected at higher frequencies and serum concentrations than those found in general populations. The median levels of ∑PBDEs, BDE-209 and ∑₃₋₇PBDEs (sum of tri-to hepta-BDEs) were 64.5, 56.9 and 7.2 ng/g lw (lipid weight), respectively, which indicated that deca-BDE was the primarily produced PBDE in Laizhou Bay and that the lower brominated BDEs were still ubiquitous in the environment. Gender was a primary influencing factor for some BDE congeners in serum; their levels in female serum samples were significantly lower than those in male serum samples. Serum PBDE levels showed a downward trend with increased body mass index (BMI), which might reflect the increasing serum lipid contents. Serum levels of some BDE congeners were significantly positively correlated with certain thyroid hormones and antibodies, including free triiodothyronine (fT3), total triiodothyronine (tT3), total thyroxine (tT4) and thyroid peroxidase antibody (TPO-Ab). Levels of some congeners were significantly negatively correlated with some types of serum lipid, including cholesterol (CHOL), low density lipoprotein (LDL) and total triglyceride (TG). Other than serum lipids, only two liver function indicators, total protein (TP) and direct bilirubin (DBIL), were significantly correlated with certain BDE congeners (BDE-100 and BDE-154). Our results provide new evidence on the thyroid-disrupting and hepatotoxic effects of PBDEs.
Mostrar más [+] Menos [-]Occurrence and seasonal distribution of five selected endocrine-disrupting compounds in wastewater treatment plants of the Metropolitan Area of Monterrey, Mexico: The role of water quality parameters
2021
López-Velázquez, Khirbet | Guzmán-Mar, Jorge L. | Saldarriaga-Noreña, Hugo A. | Murillo-Tovar, Mario A. | Hinojosa-Reyes, Laura | Villanueva-Rodríguez, Minerva
Five endocrine-disrupting compounds (EDCs) were determined in four urban wastewater treatment plants (WWTPs) of the Metropolitan Area of Monterrey (MAM) in two seasonal periods (winter and summer). The MAM, one of the most urbanized areas in Mexico, is characterized by high industrial activity and population density, leading to extensive use of several EDCs. In the MAM, ∼90% of urban and industrial wastewater is treated in WWTPs, where EDCs can be partially eliminated. In this work, dissolved levels of 17β-estradiol (E2), 17α-ethinyl estradiol (EE2), bisphenol A (BPA), 4-nonylphenol (4NP), and 4-tert-octylphenol (4TOP) in wastewater were determined. The EDCs’ determination was carried out through solid-phase extraction (SPE) and gas chromatography coupled to mass spectrometry (GC-MS). High EDCs levels (0.4–450 ng/L) were found in the influents of WWTPs, while concentrations in the effluents ranged from 0.2 to 26.8 ng/L, with E2, EE2, and 4TOP being the most persistent. The Spearman correlation analysis revealed the association between E2 and EE2 (r = 0.4835, p < 0.05), and between BPA and 4NP (r = 0.5180, p < 0.05), suggesting that these EDCs have similar sources. Also, E2, BPA, and 4TOP were positively correlated with the chemical oxygen demand (COD), biochemical oxygen demand (BOD), and total suspended solids (TSS) (r = 0.4080–0.5694, p < 0.05), indicating the association of the EDCs with the organic matter in the wastewater. The factor analysis confirmed the significant correlation of COD, BOD, TSS, temperature, and pH with the high occurrence of 4TOP during the summer. It was also confirmed that summer warmer temperatures favored the removal of BPA and 4NP in the studied WWTPs. Finally, the studied sites were classified by cluster analysis in three groups, revealing the impact that seasonality has on the behavior of the selected EDCs.
Mostrar más [+] Menos [-]CO2-assisted catalytic pyrolysis of cellulose acetate using Ni-based catalysts
2021
Cho, Seong Heon | Jung, Sungyup | Rinklebe, Jörg | Kwon, Eilhann E.
Cellulose acetate (CA) is one of widely used polymers for chemical and medical applications due to its versatile physico-chemical functionalities. Although its recycle is available after a deacetylation process, the recycle process releases a huge amount of wastewater. Thus, this study investigated a direct disposal process of CA with its valorization to syngas (H₂ and CO) through pyrolysis. To construct more environmentally benign process, CO₂ was used as a co-feedstock with CA to simultaneously convert them into syngas. Pyrolysis of CA in N₂ was performed as a reference study to examine the effectiveness of CO₂ on valorization of CA. Acetic acid and methyl acetate were main volatile pyrolysates (VPs) from CA pyrolysis, and the further thermal cracking of VPs resulted in syngas and CH₄ formations under both N₂ and CO₂ conditions. To expedite syngas formations, multi-stage pyrolysis (two-stage pyrolysis) and catalytic pyrolysis were employed. With the increased thermal energy through two-stage pyrolysis, four times more production of syngas was shown, comparing to the result of a single-stage pyrolysis. With Ni catalysts, the syngas formation was the two orders of magnitude higher than the single-stage pyrolysis, and the significant enhancement of CO formation was shown in the presence of CO₂ due to combined effects of CO₂ and the Ni-based catalysts. This CO enhancement resulted from catalytically expedited gas phase reactions between CO₂ and VPs evolved from CA. In addition, the CO₂ contributed to the suppression of coke deposition on the catalyst, thereby suggesting more technical and environmental benefits of CO₂ as a reactive co-feedstock of pyrolysis in reference to N₂. Therefore, this study proved the direct and versatile technical platform to convert CA and CO₂ into syngas.
Mostrar más [+] Menos [-]Human exposure to organochlorine, pyrethroid and neonicotinoid pesticides: Comparison between urban and semi-urban regions of India
2021
Anand, Niharika | Chakraborty, Paromita | Ray, Sujata
In developing countries, urban areas may be at greater risk of pesticide exposure compared to semi-urban agricultural regions. To investigate this, concentrations of selected pesticides were measured in 81 human milk samples collected in urban Kolkata and semi-urban Nadia in West Bengal, India. Three classes of pesticides were investigated – legacy organochlorines and emerging pyrethroids and neonicotinoids. The average concentration of the majority of the chemicals (DDT, its metabolites, HCH isomers, bifenthrin, endosulfan), showed a clear urban > semi-urban trend. Compared with previous measurements in other Indian cities and developing nations, current HCH and DDT concentrations in urban Kolkata were high. These chemicals were detected in 100% of the samples in both the urban and the semi-urban region. Also in both regions, the Estimated Daily Intake of DDTs, HCHs, aldrin, dieldrin and the pyrethroid bifenthrin for breastfed infants exceeded the Tolerable Daily Intake in a number of samples. Three pyrethroids were detected in human milk samples in India for the first time. This indicates a shift in the usage pattern of pesticides in India from organochlorines to pyrethroids. These findings may be used to drive targeted regulation of pesticides in developing countries with similar histories of pesticide use.
Mostrar más [+] Menos [-]A comprehensive assessment of endocrine-disrupting chemicals in an Indian food basket: Levels, dietary intakes, and comparison with European data
2021
Sharma, Brij Mohan | Bharat, Girija K. | Chakraborty, Paromita | Martiník, Jakub | Audy, Ondřej | Kukučka, Petr | Přibylová, Petra | Kukreti, Praveen Kumar | Sharma, Anežka | Kalina, Jiří | Steindal, Eirik Hovland | Nizzetto, Luca
Endocrine-disrupting chemicals (EDCs) in diet are a health concern and their monitoring in food has been introduced in the European Union. In developing countries, EDC dietary exposure data are scarce, especially from areas perceived as pollution hotspots, including industrialized countries like India. Several persistent organic pollutants (POPs) act as EDCs and pose a pressure to human health mainly through dietary exposure. In the present study, a range of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), dioxins and furans were measured in several food items collected from Indian urban (Delhi) and peri-urban (Dehradun) areas. Food basket contamination data were used to estimate EDC dietary exposure and compare it with that of the average European population estimated from available monitoring data. All the target contaminants were found in most food items, especially in dairies and meat products. OCPs were the main contributers to the measured EDC contamination. Food supplied to Delhi's markets had higher EDC contamination than that supplied to the peri-urban market in Dehradun. Despite lax compliance and control measures, Indian dietary exposure of OCPs and PBDEs were comparable with that of Europe and were lower for PCBs and dioxins. Higher meat consumption in Europe only partly explained this pattern which was driven also by the higher EDC residues in some European food items. A substantial part of endocrine disrupting potential in the diet derives from food and animal feeds internationally traded between developed and developing countries. With increasingly globalized food systems, internationally harmonized policies on EDC content in food can lead to better protection of health in both these contexts.
Mostrar más [+] Menos [-]