Refinar búsqueda
Resultados 921-930 de 7,288
Urinary levels of Phthalate metabolite mixtures and pulmonary function in adolescents Texto completo
2022
Zeng, Guowei | Zhang, Qi | Wang, Xiaowei | Wu, Kai-Hong
Although an association between urinary phthalate (PAE) metabolites and respiratory symptoms and diseases has been reported, knowledge regarding its effect on pulmonary function is limited, especially in adolescents. Using cross-sectional data from 1389 adolescents (aged 10–19 years) in the 2007–2012 National Health and Nutrition Examination Survey, the association of mixed urinary PAE metabolites with pulmonary function was evaluated using the weighted quantile sum. Moreover, multivariate linear regression was performed to investigate associations between each urinary PAE metabolite and pulmonary function indicators and to estimate the interaction effects between urinary PAE metabolites and demographic characteristics. We found that mixed urinary PAE metabolites were negatively associated with forced expiratory volume at the 1 s (FEV1, p < 0.001) and forced vital capacity (FVC, p = 0.008) levels. In individual PAE metabolite analyses, mono (carboxynonyl) pthalate (MCNP), mono-n-butyl pthalate (MnBP), mono-isobutyl pthalate (MiBP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) and mono-benzyl phthalate (MBzP) correlated negatively with both FVC and FEV1 values (Holm-Bonferroni corrected p < 0.05). Mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) was negatively associated with the FVC value. Significant interactions between sex and urinary MnBP or MBzP levels for the risk of FEV1 decrease in girls were found (p = 0.005), as was a significant interaction between sex and urinary MBzP level for the risk of FVC decline. Our findings suggest that higher PAE exposure is associated with respiratory dysfunction; the association is more pronounced among girls.
Mostrar más [+] Menos [-]Results of a 30-day safety assessment in young mice orally exposed to polystyrene nanoparticles Texto completo
2022
Xiao, Junting | Jiang, Xuejun | Zhou, Yujian | Sumayyah, Golamaully | Zhou, Lixiao | Tu, Baijie | Qin, Qizhong | Qiu, Jingfu | Qin, Xia | Zou, Zhen | Chen, Chengzhi
Polystyrene nanoparticles (PSNPs) are a newly emerging pollutant in the natural environment. However, due to the lack of sufficient toxicological studies in mammals, the potential effects of PSNPs on human health remain largely undefined. Therefore, in this study, young mice aged four weeks old were subjected to oral administration of 0, 0.2, 1, or 10 mg/kg PSNPs for 30 days. Our results demonstrated for the first time that oral exposure to PSNPs affected the expressions of mucus secretion-related genes and altered the community composition of intestinal microbiota, although this treatment did not cause behavioral impairments in young mice. No significant alterations in inflammatory or oxidative stress-related indicators were observed in the liver, lung, intestine, cortex or serum of PSNPs-treated animals. Moreover, exposure to PSNPs did not cause pathological changes in the liver, lung, or cortex tissues. Notably, although oral administration of PSNPs did not produce obvious toxic effects in the major organs of young mice, the possible toxicity of PSNPs remains unresolved and it may depend on the dose, exposure route and species. The potential hazardous effects of PSNPs still need to be systematically assessed, especially for children who are susceptible to exposure to nanoparticles.
Mostrar más [+] Menos [-]Transport and retention of microplastics in saturated porous media with peanut shell biochar (PSB) and MgO-PSB amendment: Co-effects of cations and humic acid Texto completo
2022
Wang, Xiaoxia | Dan, Yitong | Diao, Yinzhu | Liu, Feihong | Wang, Huan | Sang, Wenjing
Biochar particles are extensively used in soil remediation and interact with microplastics (MPs), especially metal oxide-modified biochar may have stronger interactions with MPs. The mechanism of interactions between humic acid (HA) and different valence cations is different and the co-effect on the transport of MPs is not clear. In this study, the co-effects of HA and cations (Na⁺, Ca²⁺) on the transport and retention of MPs in saturated porous media with peanut shell biochar (PSB) and MgO-modified PSB (MgO-PSB) were systematically investigated. Breakthrough curves (BTCs) of MPs were fitted by the two-site kinetic retention model for analysis. In the absence of HA, the addition of PSB and MgO-PSB significantly hindered the transport of MPs in saturated porous media, and the retention of MPs increased from 34.2% to 59.1% and 75.5%, respectively. In Na⁺ solutions, the HA concentration played a dominant role in controlling MPs transport, compared to the minor role of Na⁺. The transport capacity of MPs always increased gradually with the increase of HA concentration. Whereas, in Ca²⁺ solutions, Ca²⁺ concentrations had a stronger effect than HA. The transport ability of MPs was instead greater than that in Na⁺ solutions as the HA concentration increased at low ionic strength (1 mM). However, the transport capacity of MPs was significantly reduced with increasing HA concentrations at higher ionic strength (10, 100 mM). The two-site kinetic retention model indicated that chemical attachment and physical straining are the main mechanisms of MPs retention in the saturated porous media.
Mostrar más [+] Menos [-]Human skin responses to environmental pollutants: A review of current scientific models Texto completo
2022
Fitoussi, Richard | Faure, Marie-Odile | Beauchef, Gallic | Achard, Sophie
Whatever the exposure route, chemical, physical and biological pollutants modify the whole organism response, leading to nerve, cardiac, respiratory, reproductive, and skin system pathologies. Skin acts as a barrier for preventing pollutant modifications. This review aims to present the available scientific models, which help investigate the impact of pollution on the skin. The research question was “Which experimental models illustrate the impact of pollution on the skin in humans?” The review covered a period of 10 years following a PECO statement on in vitro, ex vivo, in vivo and in silico models. Of 582 retrieved articles, 118 articles were eligible. In oral and inhalation routes, dermal exposure had an important impact at both local and systemic levels. Healthy skin models included primary cells, cell lines, co-cultures, reconstructed human epidermis, and skin explants. In silico models estimated skin exposure and permeability. All pollutants affected the skin by altering elasticity, thickness, the structure of epidermal barrier strength, and dermal extracellular integrity. Some specific models concerned wound healing or the skin aging process. Underlying mechanisms were an exacerbated inflammatory skin reaction with the modulation of several cytokines and oxidative stress responses, ending with apoptosis. Pathological skin models revealed the consequences of environmental pollutants on psoriasis, atopic dermatitis, and tumour development. Finally, scientific models were used for evaluating the safety and efficacy of potential skin formulations in preventing the skin aging process or skin irritation after repeated contact. The review gives an overview of scientific skin models used to assess the effects of pollutants. Chemical and physical pollutants were mainly represented while biological contaminants were little studied. In future developments, cell hypoxia and microbiota models may be considered as more representative of clinical situations. Models considering humidity and temperature variations may reflect the impact of these changes.
Mostrar más [+] Menos [-]Acute and chronic ingestion of polyethylene (PE) microplastics has mild effects on honey bee health and cognition Texto completo
2022
Balzani, Paride | Galeotti, Giorgia | Scheggi, Sara | Masoni, Alberto | Santini, Giacomo | Baracchi, David
The massive use of plastic has contributed to huge quantities of hazardous refuse at a global scale and represents one of the most prominent issues of the Anthropocene. Microplastics (MPs) have been detected in almost all environments and pose a potential threat to a variety of plant and animal species. Many studies have reported a variety of effects, from negligible to detrimental, of MPs to aquatic organisms. Conversely, much less is known about their effect on terrestrial biota, and particularly on animal behavior and cognition. We assessed the oral toxicity of polyethylene (PE) MPs at three different concentrations (0.5, 5, and 50 mg L⁻¹), and at different timescales (1 day and 7 days of exposure) and tested for their effects on survival, food intake, sucrose responsiveness, habituation to sucrose and appetitive olfactory learning and memory in the honey bee Apis mellifera. We found that workers were not completely unaffected by acute and prolonged ingestion of this polymer. A significant effect of PE on bee mortality was found for the highest concentration but not for lower ones. PE affected feeding behavior in a concentration-dependent manner, with bees consuming more food than controls when exposed to low concentration PE. Regarding our behavioral and cognitive experiments, the high concentration PE was found to affect only bees’ ability to respond consistently to sucrose but not sucrose sensitivity, habituation to sucrose or learning and memory abilities, even for prolonged exposure to PE. While these last results may look somewhat encouraging, we discussed why caution is warranted before ruling out the possibility that PE particles at environmental concentrations are harmful to honey bees.
Mostrar más [+] Menos [-]In-situ biochar amendment mitigates dietary risks of heavy metals and PAHs in aquaculture products Texto completo
2022
Chen, Yiqin | Su, Junrong | Zhao, Hanyin | Li, Juan-Ying | Wang, Jian | Wang, Qian | Yin, Jie | Jin, Ling
Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) are two common contaminant groups of concern in aquaculture products. While biochar amendment can be one of the solutions to immobilize these contaminant in pond sediment, its in situ effectiveness in mitigating the bioavailability, tissue residue, and dietary risk of these contaminants is yet to be tested. In this study, we added wheat straw biochar in sediments of three aquaculture ponds with polyculture of fish and shrimps and employed passive sampling techniques (i.e., diffusive gradient in thin film for HMs and polydimethylsiloxane for PAHs) to assess the diffusion flux and bioavailability throughout the culturing cycle. Reduction in HM concentrations in organisms by biochar after 28 weeks ranged from 17% to 65% for benthic organisms and from 6.0% to 47% for fish. ΣTHQs values of HMs dropped from 2.5 to 2.1 and 1.2 to 0.91 for the two organisms with the initial ΣTHQs value above 1.0. The decrease rates of both the concentrations and ΣTHQs values followed the order of Cu > Cr > Pb > Cd, which was closely correlated with the speciation of HMs in the sediments. ΣPAHs values dropped significantly at the growth stage (20ᵗʰ week) and the mature stage (28ᵗʰ week), and, on average, by 34% across all the organisms. Carcinogenic PAHs in aquaculture products decreased dramatically at the seedling stage (12ᵗʰ week), while there was no significant change observed for the Incremental Lifetime Cancer Risk values. By comparing the freely-dissolved concentrations in pore water of sediments and the overlying water, consistently enhanced diffusion fluxes of HMs and PAHs from water to sediment over the whole culturing cycle were obtained. Our results demonstrated the in situ applicability of biochar amendment to remediating chemical pollution in aquaculture environment and safeguarding quality of aquatic products.
Mostrar más [+] Menos [-]The interplay between atmospheric deposition and soil dynamics of mercury in Swiss and Chinese boreal forests: A comparison study Texto completo
2022
Chen, Chaoyue | Huang, Jen-How | Meusburger, Katrin | Li, Kai | Fu, Xuewu | Rinklebe, Jörg | Alewell, Christine | Feng, Xinbin
Taking advantage of the different histories of Hg deposition in Davos Seehornwald in E-Switzerland and Changbai Mountain in NE-China, the influence of atmospheric deposition on Hg soil dynamics in forest soil profiles was investigated. Today, Hg fluxes in bulk precipitation were similar, and soil profiles were generally sinks for atmospherically deposited Hg at both sites. Noticeably, a net release of 2.07 μg Hg m⁻² yr⁻¹ from the Bs horizon (Podzol) in Seehornwald was highlighted, where Hg concentration (up to 73.9 μg kg⁻¹) and soil storage (100 mg m⁻³) peaked. Sequential extraction revealed that organic matter and crystalline Fe and Al hydr (oxide)-associated Hg decreased in the E horizon but increased in the Bs horizon as compared to the Ah horizon, demonstrating the coupling of Hg dynamics with the podzolisation process and accumulation of legacy Hg deposited last century in the Bs horizon. The mor humus in Seehornwald allowed Hg enrichment in the forest floor (182–269 μg kg⁻¹). In Changbai Mountain, the Hg concentrations in the Cambisol surface layer with mull humus were markedly lower (<148 μg kg⁻¹), but with much higher Hg soil storage (54–120 mg m⁻³) than in the Seehornwald forest floor (18–27 mg m⁻³). Thus, the vertical distribution pattern of Hg was influenced by humus form and soil type. The concentrations of Hg in soil porewater in Seehornwald (3.4–101 ng L⁻¹) and in runoff of Changbai Mountain (1.26–5.62 ng L⁻¹) were all low. Moreover, the pools of readily extractable Hg in the soils at both sites were all <2% of total Hg. Therefore, the potential of Hg release from the forest soil profile to the adjacent aquatic environment is currently low at both sites.
Mostrar más [+] Menos [-]Effects of sediment physicochemical factors and heavy metals on the diversity, structure, and functions of bacterial and fungal communities from a eutrophic river Texto completo
2022
Lin, Wanjing | Zhao, Jiaqi | Miao, Lingzhan | Hou, Jun
Urbanization has destroyed river ecosystems, leading to eutrophication. Heavy metals are frequently observed in urban rivers, and the joint effects of eutrophication and heavy metals on microbial communities, especially on fungal communities, have not been adequately explored. In this study, we explored the effect of sediment physicochemical factors and heavy metals on the microbial diversity, community structure, and functions of bacterial and fungal communities from a black-odorous river in Wuhu, China. Twenty-four samples were collected, and the diversity and structure of fungal and bacterial communities were determined by high-throughput sequencing. Proteobacteria and Rozellomycota were the main phyla in the bacterial and fungal communities, respectively. The results showed different distribution patterns of bacterial and fungal communities along the river. Physicochemical factors and heavy metals exhibited different effects on microbial variation. Specifically, pH and Cr negatively affected bacterial α-diversity, whereas total phosphorus and Cr significantly affected fungal α-diversity. Variance partitioning analysis revealed that physicochemical factors explained more of the bacterial community structure than heavy metals (49.5% vs. 36.6%), with pH and total phosphorus being the dominant factors. Opposite patterns were observed for fungal community structure, with heavy metals contributing the most (48.0%). A similar influence pattern was observed for the predicted functions of the two communities. This study suggests that heavy metals in eutrophication rivers are essential factors that shift the microbial variation and should be considered in urban river evaluation and remediation.
Mostrar más [+] Menos [-]Assessment of heavy metal and metalloid levels and screening potential of tropical plant species for phytoremediation in Singapore Texto completo
2022
Wang, Yamin | Tan, Swee Ngin | Mohd Yusof, Mohamed Lokman | Ghosh, Subhadip | Lam, Yeng Ming
Heavy metal or metalloid contamination is a common problem in soils of urban environments. Their introduction can be due to unpremeditated anthropogenic activities like atmospheric deposition produced by diffuse sources, construction activities and landscape maintenance. Phytoremediation is a rapidly evolving, sustainable approach to remediate the contaminated lands where metals and metalloids are highly persistent in the environment. The present work sets out to determine the level of 12 heavy metals and metalloids (As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb and Zn) in soil and their accumulation by plant foliage found in nature parks and industrial sites in Singapore. The latter also involve the investigation of the remediation capacity of selected tropical plant species found at the sampling sites. The study is done using digestion and inductively coupled plasma-optical emission spectrometry. Eleven soil sampling sites across Singapore with 300 sampling points were selected, where soil (0–10 cm) and plant foliage samples were collected. Bioconcentration factors were determined to assess the phytoremediation potential of the collected plant species. Toxicity risk of heavy metals were assessed by comparing the target and intervention values from the soil quality guidelines by the Dutch Standard. Results of the study revealed there were regions where levels of heavy metals and metalloids were relatively high and could affect the environment and the health of flora and fauna in Singapore. Our study discovered that there were available tropical plant species (e.g., wildflowers, ferns and shrubs) which could potentially play a significant role in the remediation of contaminated lands that could open up a huge possibility of developing a sustainable and environmentally-friendly way of managing this emerging urban problem. Results showed that 12 plant species, including hyperaccumulator like Pteris vittata, Centella asiatica, were effective for the accumulation of heavy metals and metalloids.
Mostrar más [+] Menos [-]Age- and sex-specific dermal exposure of polycyclic aromatic hydrocarbons in the general population of a city in south China Texto completo
2022
Guo, Jian | Luo, Xiaojun | Yang, Yan | Lv, Yinzhi | Zeng, Yanhong | Mai, Bixian
This study assessed the dermal exposure of population to polycyclic aromatic hydrocarbons (PAHs) in a South China city. Skin wipe samples of the face, hand, forearm, and shank were collected from 120 volunteers (50% male and 50% female) belonging to different age groups (preschooler, thresholder, middle-aged, and elderly). Concentrations of PAHs in the skin wipe samples varied from 18 to 27000 ng/m² in the order of face > hand > forearm > shank, regardless of age and gender. The PAH concentrations of bare skin locations were significantly higher in females than in males, while no significant differences were observed for clothing-covered skin locations between genders. The PAH concentrations for faces were significantly higher in the elderly compared to the other groups. The PAH composition was distinct between the four age groups. The dermal exposure levels of total PAHs and total BaP equivalent concentration (BaPₑq) varied from 25.6 to 620 and 0.093–37.4 ng/kg body weight/d, respectively. The dermal exposure levels of total PAHs were significantly higher in females than in males in all age groups except for the middle-aged group. The hand-mouth exposure doses were significantly higher in the preschoolers than in the other age groups. The values of the carcinogenic risk caused by dermal PAH exposure were between 3.5 × 10⁻⁶ and 1.4 × 10⁻³ with 29% of the population (35/120) having risk values exceeding significant levels (1 × 10⁻⁴). The thresholder group exhibited the highest risk for PAH dermal exposure among all groups of the population. This study provides a comprehensive evaluation of the age- and gender-related risk of PAH through dermal exposure.
Mostrar más [+] Menos [-]