Refinar búsqueda
Resultados 971-980 de 7,292
Speciation and release risk of heavy metals bonded on simulated naturally-aged microplastics prepared from artificially broken macroplastics Texto completo
2022
Chen, Gaobin | Fu, Qianmin | Tan, Xiaofei | Yang, Hailan | Luo, Yang | Shen, Maocai | Ku, Yenlin
The negative impact of microplastics (MPs) act as metals vectors to environment and ecosystem have been paid more and more attention, and the accumulation risk of them to human body through the food chains and food webs needs to attract attention. In addition, the MPs bonded with heavy metals transport from river into the sea with high salinity may also have metals release risk. Herein, natural aged microplastics prepared from artificially broken macroplastics adsorbed with heavy metals accumulated from the natural environment were tested for their states and release risk in several simulated solution (NaCl and gastrointestinal solutions) to understand their effects on environment and human health. The adsorption capacity of different heavy metals on MPs was different during natural aging process proved by four-acid digestion method. Metals with high accumulation (including Pb, As, Cr, Mn, Ni, Zn, Co, Cu and Cd) on NAMPs were selected for further study. Results obtained via three-step extraction method showed that these heavy metals were mainly present as acid-extractable and reducible ions, which were characterized by high bioavailability. Release experiments suggested the notable Mn, Zn, As, Cr, Cu and Ni release in NaCl solution, and significant release of Mn, Zn, As, Cr, Cu, Pb and Ni in gastrointestinal solutions. The high metal release ratio in the simulated gastric solution was attributed to the weak binding of metal ions to NAMPs in acidic environment. This study will play a vital rule in assessing the ecological risks associated with MPs in natural environment.
Mostrar más [+] Menos [-]Sediment spiking and equilibration procedures to achieve partitioning of uranium similar to contamination in tropical wetlands near a mine site Texto completo
2022
Harford, Andrew J. | Simpson, Stuart L. | Humphrey, Christopher L. | Parry, David L. | Kumar, Anu | Chandler, Lisa | Stauber, Jennifer L. | van Dam, Rick A.
The derivation of sediment quality guideline values (SQGVs) presents significant challenges. Arguably the most important challenge is to conduct toxicity tests using contaminated sediments with physico-chemistry that represents real-world scenarios. We used a novel metal spiking method for an experiment that ultimately aims to derive a uranium SQGV. Two pilot studies were conducted to inform the final spiking design, i.e. percolating a uranyl sulfate solution through natural wetland sediments. An initial pilot study that used extended mixing equilibration phases produced hardened sediments not representative of natural sediments. A subsequent percolation method produced sediment with similar texture to natural sediment and was used as the method for spiking the sediments. The range of total recoverable uranium (TR-U) concentrations achieved was 8–3200 mg/kg. This reflected the concentrations found in natural wetlands and water management ponds found on a uranium mine site and was above natural levels. Dilute-acid extractable uranium (AE-U) concentrations were >80% of total concentrations, indicating that much of the uranium in the spiked sediment was labile and potentially bioavailable. The portion of TR-U extractable as AE-U was similar at the start and end of the 4.5-month field-deployment. Porewater uranium (PW–U) analyses indicated that partition coefficients (Kd) were 2000–20,000 L/kg, and PW-U was greater in post- than pre-field-deployed samples when TR-U was ≤1500 mg/kg, indicating the binding became weaker during the field-deployment period. At higher spiked-U concentrations, the PW-U was lower post-field-deployment. Comparing the physico-chemical data of the spiked sediments with environmental monitoring data from sediments in the vicinity of a uranium mining operation indicated that they were representative of sediments contaminated by mining and that the U-spiked sediments had a clear U concentration gradient. This confirmed the suitability of the spiking procedure for preparing sediments that were suitable for deriving a SQGV for uranium.
Mostrar más [+] Menos [-]Ecotoxicity of sewage sludge- or sewage sludge/willow-derived biochar-amended soil Texto completo
2022
Godlewska, Paulina | Jośko, Izabela | Oleszczuk, Patryk
Co-pyrolysis of sewage sludge (SL) with plant biomass gains attention as a way to minimize SL-derived biochar drawbacks, such as high amount of toxic substances, low specific surface area and carbon content. The toxicity of soil amended with SL- (BCSL) or SL/biomass (BCSLW)-derived biochar was evaluated in long-term pot experiment (180 days). The results were compared to SL-amended soil. Biochars produced at 500, 600, or 700 °C were added to the soil (podzolic loamy sand) at a 2% (w/w) dose. Samples were collected at four different time points (at the beginning, after 30, 90 and 180 days) to assess the potential toxicity of SL-, BCSL- or BCSLW-amended soil. The bacteria Aliivibrio fischeri (luminescence inhibition – Microtox), the plant Lepidium sativum (root growth and germination inhibition test – Phytotoxkit F), and the invertebrate Folsomia candida (mortality and reproduction inhibition test – Collembolan test) were used as the test organisms. Depending on the organism tested and the sample collection time point variable results were observed. In general, SL-amended soil was more toxic than soil with biochars. The leachates from BCSLW-amended soil were more toxic to A. fischeri than leachate from BCSL-amended soil. A different tendency was observed in the case of phytotoxicity. Leachate from BCSL-amended soil was more toxic to L. sativum compared to BCSLW-amended soil. The effect of biochars on F. candida was very diversified, which did not allow a clear trend to be observed. The toxic effect of SL-, BCSL- or BCSW-amended soil to particular organisms was observed in different time, point's periods, which may suggest the different factors affecting this toxicity.
Mostrar más [+] Menos [-]Removal effect of enrofloxacin from mariculture sediments by bioelectrochemical system and analysis of microbial community structure Texto completo
2022
Ding, Nan | Jin, Chunji | Zhao, Nannan | Zhao, Yangguo | Guo, Liang | Gao, Mengchun | She, Zonglian | Ji, Junyuan
Based on the application of sediment microbial fuel cell (SMFC) in the bioremediation of sediment, this study used the sediment microbial fuel cell technology as the leading reactor. Modification of anode carbon felts (CF) by synthesis of PANI/MnO₂ composited to improve the electrical performance of the sediment microbial fuel cell. This study investigated the degradation effects, degradation pathways of the specific contaminant enrofloxacin and microbial community structure in sediment microbial fuel cell systems. The results showed that the sediment microbial fuel cell system with modified anode carbon felt (PANI-MnO₂/CF) prepared by in-situ chemical polymerization had the best power production performance. The maximum output voltage was 602 mV and the maximum power density was 165.09 mW m⁻². The low concentrations of enrofloxacin (12.81 ng g⁻¹) were effectively degraded by the sediment microbial fuel cell system with a removal rate of 59.52%.
Mostrar más [+] Menos [-]Role of microbes in bioaccumulation of heavy metals in municipal solid waste: Impacts on plant and human being Texto completo
2022
Sharma, Pooja | Dutta, Deblina | Udayan, Aswathy | Nadda, Ashok Kumar | Lam, Su Shiung | Kumar, Sunil
The presence of heavy metals in municipal solid waste (MSW) is considered as prevalent global pollutants that cause serious risks to the environment and living organisms. Due to industrial and anthropogenic activities, the accumulation of heavy metals in the environmental matrices is increasing alarmingly. MSW causes several adverse environmental impacts, including greenhouse gas (GHG) emissions, river plastic accumulation, and other environmental pollution. Indigenous microorganisms (Pseudomonas, Flavobacterium, Bacillus, Nitrosomonas, etc.) with the help of new pathways and metabolic channels can offer the potential approaches for the treatment of pollutants. Microorganisms, that exhibit the ability of bioaccumulation and sequestration of metal ions in their intracellular spaces, can be utilized further for the cellular processes like enzyme signaling, catalysis, stabilizing charges on biomolecules, etc. Microbiological techniques for the treatment and remediation of heavy metals provide a new prospects for MSW management. This review provides the key insights on profiling of heavy metals in MSW, tolerance of microorganisms, and application of indigenous microorganisms in bioremediation. The literatures revealed that indigenous microbes can be exploited as potential agents for bioremediation.
Mostrar más [+] Menos [-]Comprehensive chemical characterization of gaseous I/SVOC emissions from heavy-duty diesel vehicles using two-dimensional gas chromatography time-of-flight mass spectrometry Texto completo
2022
He, Xiao | Zheng, Xuan | You, Yan | Zhang, Shaojun | Zhao, Bin | Wang, Xuan | Huang, Guanghan | Chen, Ting | Cao, Yihuan | He, Liqiang | Chang, Xing | Wang, Shuxiao | Wu, Ye
Intermediate-volatility and semi-volatile organic compounds (I/SVOCs) are key precursors of secondary organic aerosol (SOA). However, the comprehensive characterization of I/SVOCs has long been an analytical challenge. Here, we develop a novel method of speciating and quantifying I/SVOCs using two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-ToF-MS) by constructing class-screening programs based on their characteristic fragments and mass spectrum patterns. Using this new approach, we then present a comprehensive analysis of gaseous I/SVOC emissions from heavy-duty diesel vehicles (HDDVs). Over three-thousand compounds are identified and classified into twenty-one categories. The dominant compound groups of I/SVCOs emitted by HDDVs are alkanes (including normal and branched alkanes, 37–66%), benzylic alcohols (7–20%), alkenes (3–11%), cycloalkanes (3–9%), and benzylic ketones (1–4%). Oxygenated I/SVOCs (O–I/SVOCs, e.g., benzylic alcohols and ketones) are first quantified and account for >20% of the total I/SVOC mass. Advanced aftertreatment devices largely reduce the total I/SVOC emissions but increase the proportion of O–I/SVOCs. With the speciation data, we successfully map the I/SVOCs into the two-dimensional volatility basis set space, which facilitates a better estimation of SOA. As aging time goes by, approximate 45% difference between the two scenarios after seven-day aging is observed, which confirms the significant impact of speciated I/SVOC emission data on SOA prediction.
Mostrar más [+] Menos [-]Severe contamination of carcinogenic heavy metals and metalloid in agroecosystems and their associated health risk assessment Texto completo
2022
Kumar, Pradeep | Dīpti, | Kumar, Sunil | Singh, Rana Pratap
The contamination of toxic heavy metals (i.e., Cd, Cr, Pb, and Ni) and metalloid (i.e., As) (TMMs) is considered as a major cause of increasing incidences of human and livestock cancers, gastrointestinal disorders and neurological problems. The levels of these TMMS in soil, irrigation water, and plants like Salanum lycopersicum (tomato), Spinacia oleracea (Spinach), and Triticum aestivum (Wheat) samples were detected which were collected from various localities across 100 km around the city of Lucknow, India. This study reported that the concentration of TMMs was within the range of maximum allowable concentration (MAC) (FAO/WHO, 2011) in most of the agricultural soil, whereas, it was higher in irrigation water. The TMMs levels in the edible parts of vegetables and cereal were in the range 1.91–53.94 μg/g, 5.06–40.49 μg/g, 4.08-2312-29 μg/g, 0.43–51.48 μg/g, and 0.01–1.65 μg/g, respectively which was significantly higher than the MAC. The BAF of Cd and Ni was very high in the edible parts of the vegetables and cereal samples indicating an entry of TMMs in food chain through the metal-contaminated irrigation water, even if TMMs are low in the field soil. The contamination coefficient (Cfi) and Ecological risk factors (Efi) of the TMMs were detected in the range of low risk in all agricultural soil. The Ecological risk index (ERI) of TMMs was at moderate risk, indicating a mild impact of the metal toxicity in the agro-ecosystems but the high risk on the consumers. The daily intake (DI) of TMMs through vegetables and cereal was below the maximum allowable daily intake (MTDI) but the carcinogenic risk factor (CRs) potential of Cr, Cd, Ni, and As was observed significantly higher for these vegetables and cereal, which indicated a complex scenario of a far-future carcinogenic health hazard on consumers in densely populated city of Lucknow, India and its surrounding regions.
Mostrar más [+] Menos [-]Rape straw application facilitates Se and Cd mobilization in Cd-contaminated seleniferous soils by enhancing microbial iron reduction Texto completo
2022
Lyu, Chenhao | Li, Lei | Liu, Xinwei | Zhao, Zhuqing
Many naturally seleniferous soils are faced with Cd contamination problem, which severely limits crop cultivation in these areas. Straw returning has been widely applied in agricultural production due to its various benefits to soil physicochemical properties, soil fertility, and crops yield. However, effects of straw application on the fates of Se and Cd in Cd-contaminated seleniferous soils remain largely unclear. Therefore, the effects of straw application on the fates of Se and Cd in Cd-contaminated seleniferous soils were investigated in this study. The results showed that iron reduction driven by Clostridium and Anaeromyxbacter was responsible for the variations in Se and Cd fates in soil. Straw application respectively increased the gene copy numbers of Clostridium and Anaeromyxbacter by 19.5–56.3% and 33.6–39.8%, thus promoting iron reductive dissolution, eventually resulting in a high release amount of Se and Cd from Fe(III) (oxyhydr) oxides. Under reducing conditions, the released Cd was adsorbed by the newly formed metal sulfides or reacted with sulfides to generate CdS precipitates. Straw application decreased the soil exchangeable Se and soil exchangeable Cd concentration during flooding phase. However, straw application significantly increased Se/Cd in soil solution which had the highest bioavailability during flooding. In addition, straw application increased soil exchangeable Se concentration, but it had no significant effects on soil exchangeable Cd concentration after soil drainage. Taken together, straw application increased Se bioavailability and Cd mobility. Therefore, straw application is an effective method for improving Se bioavailability, but it is not suitable for the application to Cd-contaminated paddy soils. In the actual agricultural production, straw could be applied in seleniferous soils to improve Se bioavailability. At the same time, straw application should be cautious to avoid the release of Cd from Cd-contaminated soil.
Mostrar más [+] Menos [-]An interval two-stage fuzzy fractional programming model for planning water resources management in the coastal region – A case study of Shenzhen, China Texto completo
2022
Li, Xiaoyang | Huang, Guohe | Wang, Shuguang | Li, Yongping | Zhang, Xiaoyue | Zhou, Xiong
In this study, an interval two-stage fuzzy fractional programming (TFFP) method is developed to facilitate collaborative governance of economy and water resources. Methods of interval programming, fuzzy programming, two-stage programming, and fractional programming are integrated within a general system optimization framework. The main contribution of TFFP is simultaneously addressing various uncertainties and tackling trade-offs between environmental and economic objectives in the optimized schemes for water resources allocation. A case study of a highly urbanized coastal city (i.e., Shenzhen) in China is provided as an example for demonstrating the proposed approach. According to the results, industrial sectors should receive 34.8% of total water supply, while agricultural sectors should receive 1.5%. For the spatial allocation of water resources, Bao An, Long Gang, and Fu Tian districts should be allocated 21.6%, 20.5%, and 14.8% water to promote the economic development. The discharge analysis indicates that chemical oxygen demand (CODcᵣ) and total phosphorus (TP) would be key pollutants. Moreover, the optimized seawater desalination volume would be negligibly influenced by price, while the upper bounds of desalination would be increased with the raising acceptable credibility levels in the period of 2031–2035. Analysis of desalination prices also reveals that the decision-makers should increase the scale of desalination in the period of 2021–2025. In addition, the effectiveness and applicability of TFFP would be evaluated under economic maximization scenarios. The result showed that the economic maximization scenario could obtain higher economic benefits, but it would be accompanied by a larger number of pollutant discharges. It is expected that this study will provide solid bases for planning water resources management systems in coastal regions.
Mostrar más [+] Menos [-]Bioremediation of PAHs and heavy metals co-contaminated soils: Challenges and enhancement strategies Texto completo
2022
Ali, Mukhtiar | Song, Xin | Ding, Da | Wang, Qing | Zhang, Zhuanxia | Tang, Zhiwen
Systemic studies on the bioremediation of co-contaminated PAHs and heavy metals are lacking, and this paper provides an in-depth review on the topic. The released sources and transport of co-contaminated PAHs and heavy metals, including their co-occurrence through formation of cation-π interactions and their adsorption in soil are examined. Moreover, it is investigated that co-contamination of PAHs and heavy metals can drive a synergistic positive influence on bioremediation through enhanced secretion of extracellular polymeric substances (EPSs), production of biosynthetic genes, organic acid and enzymatic proliferation. However, PAHs molecular structure, PAHs-heavy metals bioavailability and their interactive cytotoxic effects on microorganisms can exert a challenging influence on the bioremediation under co-contaminated conditions. The fluctuations in bioavailability for microorganisms are associated with soil properties, chemical coordinative interactions, and biological activities under the co-contaminated PAHs-heavy metals conditions. The interactive cytotoxicity caused by the emergence of co-contaminants includes microbial cell disruption, denaturation of DNA and protein structure, and deregulation of antioxidant biological molecules. Finally, this paper presents the emerging strategies to overcome the bioavailability problems and recommends the use of biostimulation and bioaugmentation along with the microbial immobilization for enhanced bioremediation of PAHs-heavy metals co-contaminated sites. Better knowledge of the bioremediation potential is imperative to improve the use of these approaches for the sustainable and cost-effective remediation of PAHs and heavy metals co-contamination in the near future.
Mostrar más [+] Menos [-]