Refinar búsqueda
Resultados 1-10 de 148
Delayed environmental pollution caused by transient landscape storage - An example from the Lesser Antilles Texto completo
2025
Bizeul, Rémi | Lajoie, Oriane | Cerdan, Olivier | Pak, Lai-Ting | Foucher, Anthony | Huon, Sylvain | Grangeon, Thomas | Evrard, Olivier
The strong pest pressure on intensive banana cultivation in the French West Indies led to the intensive use of chlordecone (an organochlorine insecticide) between 1972 and 1993. Due to its high toxicity for the population and the environment, many studies were conducted on the transfer of chlordecone over the last 20 years. However, most studies focused on the dissolved fraction of chlordecone, while the particle-bound fraction was understudied. Therefore, this study reconstructs pluri-decadal erosion rates ( 1980–2023) and associated chlordecone particle-bound transfers from soil and sediment cores sampled in a cultivated headwater catchment (Saint-Esprit, Martinique). Based on sediment accumulation analyses in an agricultural reservoir, high erosion rates ( 10 t ha−1 yr−1) were found in the investigated catchment during the study period, with values exceeding the estimated tolerable soil loss rate in tropical contexts ( 2.2 t ha−1 yr−1). Based on the analysis of soil cores sampled along a banana plantation hillslope, this study highlights the formation of colluvial deposits with high levels of chlordecone contamination. When these areas are affected by erosion processes, this leads to massive remobilization of particle-bound chlordecone to water bodies. Indeed, in sediment sampled in the downstream reservoir, we observed a drastic increase in these transfers since 2006, synchronous with changes in agricultural practices. This study therefore highlighted the occurrence of legacy contamination at toeslope positions, which was estimated to potentially persist for 4000 to 11,000 years. Such a residence time highlights the need to implement changes in land management to effectively reduce erosion of agricultural soils, particularly in areas identified as ”temporary deposition zones” for chlordecone contamination, in order to protect downstream water bodies from chlordecone transfer. To achieve this, agricultural practices that may increase soil erosion, such as herbicide application or intensive ploughing, should be minimized. Overall, this study improved our understanding of erosion and associated chlordecone transfers in tropical environments.
Mostrar más [+] Menos [-]Unique behavior of zinc in organic waste-amended soils: A review bridging molecular processes and environmental fate Texto completo
2025
Formentini, Thiago Augusto | Fekiacova-Castanet, Zuzana | Pinheiro, Adilson | Doelsch, Emmanuel
Organic waste (OW) is a major source of zinc (Zn) contamination in soils, while the behavior of this element is highly influenced by its speciation. This review examines Zn speciation in OW and OW-amended soils according to data from studies using synchrotron-based X-ray absorption spectroscopy (XAS). In contrast to the well-established Zn behavior in soils contaminated by industrial sources such as mining and smelting, Zn in OW-amended soils exhibits distinct characteristics. Notably, Zn–phosphate is abundant when oxidizing conditions prevail in OW, and this species is consistently observed in amended soils. In contrast, nanosized Zn sulfide (nano-ZnS) dominates in OW under reducing conditions and is susceptible to rapid solubilization following soil application. After Zn release in soil, its complexation by organic ligands (Zn–OM) warrants special attention as it has been linked to both long-term Zn retention and enhanced Zn mobilization via colloid-mediated transport. The role of other key Zn species in the OW recycling context, i.e. Zn–phyllosilicate and Zn–Fe (hydr)oxide, is also discussed. Additionally, we review studies using the diffusive gradients in thin films (DGT) technique to assess Zn lability in OW-amended soils. This reveals that proportional increases in DGT-Zn levels due to OW application are more substantial than corresponding increases in total Zn concentration, thus suggesting enhanced lability. By consolidating the current understanding and identifying key research gaps, this review proposes future directions to advance knowledge of Zn speciation and behavior in OW-amended soils. This, in turn, can help improve sustainable OW recycling practices and mitigate Zn-related risks to agroecosystems.
Mostrar más [+] Menos [-]Uptake of chemicals from tire wear particles into aquatic organisms - search for biomarkers of exposure in blue mussels | Uptake of chemicals from tire wear particles into aquatic organisms - search for biomarkers of exposure in blue mussels Texto completo
2025
Foscari, Aurelio Giovanni | Herzke, Dorte | Mowafi, Riham | Seiwert, Bettina | De Witte, Bavo | Delbare, Daan | Heras, Gustavo Blanco | Gago, Jesus | Reemtsma, Thorsten
Little is known about the exposure of aquatic biota to tire and road wear particles (TRWP) washed away from roads. Mussels were exposed for 7 days to model TRWP (m-TRWP), produced by milling tire tread particles with pure sand, and analyzed for 21 tire-related compounds by liquid chromatography-high resolution-mass spectrometry (LC-HRMS). Upon exposure to 0.5 g/L of m-TRWP, 15 compounds were determined from 944 μg/kg wet weight (diphenylguanidine, DPG) over 18 μg/kg for an oxidation product of N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6-PPDQ) to 0.6 μg/kg (4-hydroxydiphenyl amine). Transfer into mussels was highest for PTPD, DTPD and 6-PPDQ and orders of magnitude lower for 6-PPD. During 7 days depuration the concentration of all determined chemicals decreased to remaining concentrations between ~50 % (PTPD, DTPD) and 6 % (6-PPD). Suspect and non-target screening found 37 additional transformation products (TPs) of tire additives, many of which did not decrease in concentration during depuration, among them ten likely TPs of DPG, two of 6-PPD and PTPD and two of 1,2-dihydro-2,2,4-trimethylquinoline. A wide variety of chemicals is taken up by mussels upon exposure to m-TRWP and a wide range of TPs is formed, enabling the differentiation of biomarkers of exposure to TRWP and biomarkers of exposure to tire-associated chemicals. | publishedVersion
Mostrar más [+] Menos [-]UV-degradation is a key driver of the fate and impacts of marine plastics. How can laboratory experiments be designed to effectively inform risk assessment? | UV-degradation is a key driver of the fate and impacts of marine plastics. How can laboratory experiments be designed to effectively inform risk assessment? Texto completo
2025
Hernandez, Laura M. | Howarth-Forster, Lucy | Sørensen, Lisbet | Booth, Andrew Michael | Vidal, Alice | Tufenkji, Nathalie | Sempéré, Richard | Schmidt, Natascha
Marine plastic litter is subject to different abiotic and biotic forces that lead to its degradation, the main driver being UV-induced photodegradation. Since UV-exposure leads to both physical and chemical degradation of plastic, leading to a release of micro- and nanoplastics as well as leaching of chemicals and degradation products – it is expected to have radical impacts on plastics fate and effects in the marine environment. The number of laboratory studies investigating the mechanisms of plastic UV-degradation in seawater has increased significantly in the past 10 years, but are the exposures designed in a manner that allow observations to be extrapolated to environmental fate? Most studies to date focus on quantifying plastic fragmentation and surface changes, but is this relevant for impact assessments? Here, we provide a review of the current scientific literature on UV-degradation of plastic under marine conditions. Plastic fragmentation processes and surface changes as well as implications of UV-degradation of plastics on additive leaching and the toxicity of UV-weathered versus non-weathered plastics are highlighted. Furthermore, experimental set-ups are critically inspected and recommendations for future studies are issued. | publishedVersion
Mostrar más [+] Menos [-]Main conclusions and perspectives from the collective scientific assessment of the effects of plant protection products on biodiversity and ecosystem services along the land-sea continuum in France and French overseas territories Texto completo
2025
Pesce, Stéphane | Mamy, Laure | Sanchez, Wilfried | Amichot, Marcel | Artigas, Joan | Aviron, Stéphanie | Barthélémy, Carole | Beaudouin, Rémy | Bedos, Carole | Berard, Annette | Berny, Philippe | Bertrand, Cédric | Bertrand, Colette | Betoulle, Stéphane | Bureau-Point, Eve | Charles, Sandrine | Chaumot, Arnaud | Chauvel, Bruno | Coeurdassier, Michaël | Corio-Costet, Marie-France | Coutellec, Marie-Agnès | Crouzet, Olivier | Doussan, Isabelle | Fabure, Juliette | Fritsch, Clémentine | Gallai, Nicola | Gonzalez, Patrice | Gouy, Véronique | Hedde, Mickaël | Langlais, Alexandra | Le Bellec, Fabrice | Leboulanger, Christophe | Margoum, Christelle | Martin-Laurent, Fabrice | Mongruel, Rémi | Morin, Soizic | Mougin, Christian | Munaron, Dominique | Nelieu, Sylvie | Pelosi, Céline | Rault, Magali | Sabater, Sergi | Stachowski-Haberkorn, Sabine | Sucre, Eliott | Thomas, Marielle | Tournebize, Julien | Leenhardt, Sophie
Main conclusions and perspectives from the collective scientific assessment of the effects of plant protection products on biodiversity and ecosystem services along the land-sea continuum in France and French overseas territories Texto completo
2025
Pesce, Stéphane | Mamy, Laure | Sanchez, Wilfried | Amichot, Marcel | Artigas, Joan | Aviron, Stéphanie | Barthélémy, Carole | Beaudouin, Rémy | Bedos, Carole | Berard, Annette | Berny, Philippe | Bertrand, Cédric | Bertrand, Colette | Betoulle, Stéphane | Bureau-Point, Eve | Charles, Sandrine | Chaumot, Arnaud | Chauvel, Bruno | Coeurdassier, Michaël | Corio-Costet, Marie-France | Coutellec, Marie-Agnès | Crouzet, Olivier | Doussan, Isabelle | Fabure, Juliette | Fritsch, Clémentine | Gallai, Nicola | Gonzalez, Patrice | Gouy, Véronique | Hedde, Mickaël | Langlais, Alexandra | Le Bellec, Fabrice | Leboulanger, Christophe | Margoum, Christelle | Martin-Laurent, Fabrice | Mongruel, Rémi | Morin, Soizic | Mougin, Christian | Munaron, Dominique | Nelieu, Sylvie | Pelosi, Céline | Rault, Magali | Sabater, Sergi | Stachowski-Haberkorn, Sabine | Sucre, Eliott | Thomas, Marielle | Tournebize, Julien | Leenhardt, Sophie
Preservation of biodiversity and ecosystem services is critical for sustainable development and human well-being. However, an unprecedented erosion of biodiversity is observed and the use of plant protection products (PPP) has been identified as one of its main causes. In this context, at the request of the French Ministries responsible for the Environment, for Agriculture and for Research, a panel of 46 scientific experts ran a nearly 2-year-long (2020–2022) collective scientific assessment (CSA) of international scientific knowledge relating to the impacts of PPP on biodiversity and ecosystem services. The scope of this CSA covered the terrestrial, atmospheric, freshwater, and marine environments (with the exception of groundwater) in their continuity from the site of PPP application to the ocean, in France and French overseas territories, based on international knowledge produced on or transposable to this type of context (climate, PPP used, biodiversity present, etc.). Here, we provide a brief summary of the CSA's main conclusions, which were drawn from about 4500 international publications. Our analysis finds that PPP contaminate all environmental matrices, including biota, and cause direct and indirect ecotoxicological effects that unequivocally contribute to the decline of certain biological groups and alter certain ecosystem functions and services. Levers for action to limit PPP-driven pollution and effects on environmental compartments include local measures from plot to landscape scales and regulatory improvements. However, there are still significant gaps in knowledge regarding environmental contamination by PPPs and its effect on biodiversity and ecosystem functions and services. Perspectives and research needs are proposed to address these gaps.
Mostrar más [+] Menos [-]Main conclusions and perspectives from the collective scientific assessment of the effects of plant protection products on biodiversity and ecosystem services along the land–sea continuum in France and French overseas territories Texto completo
2023
Pesce, Stéphane | Mamy, Laure | Sanchez, Wilfried | Amichot, Marcel | Artigas, Joan | Aviron, Stéphanie | Barthélémy, Carole | Beaudouin, Rémy | Bedos, Carole | Bérard, Annette | Berny, Philippe | Bertrand, Cédric | Bertrand, Colette | Betoulle, Stéphane | Bureau-Point, Eve | Charles, Sandrine | Chaumot, Arnaud | Chauvel, Bruno | Coeurdassier, Michael | Corio-Costet, M.-F. | Coutellec, Marie-Agnès | Crouzet, Olivier | Doussan, Isabelle | Fabure, Juliette | Fritsch, Clémentine | Gallai, Nicola | Gonzalez, Patrice | Gouy-Boussada, Véronique | Hedde, Mickael | Langlais, Alexandra | Le Bellec, Fabrice | Leboulanger, Christophe | Margoum, Christelle | Martin-Laurent, Fabrice | Mongruel, Rémi | Morin, Soizic | Mougin, Christian | Munaron, Dominique | Nelieu, Sylvie | Pélosi, Céline | Rault, Magali | Sabater, Sergi | Stachowski-Haberkorn, Sabine | Sucré, Elliott | Thomas, Marielle | Tournebize, Julien | Leenhardt, Sophie | RiverLy - Fonctionnement des hydrosystèmes (RiverLy) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER) | Institut Sophia Agrobiotech (ISA) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Côte d'Azur (UCA) | Laboratoire Microorganismes : Génome et Environnement (LMGE) ; Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA) | Biodiversité agroécologie et aménagement du paysage (UMR BAGAP) ; Ecole supérieure d'Agricultures d'Angers (ESA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Rennes Angers ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Laboratoire Population-Environnement-Développement (LPED) ; Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU) | Institut National de l'Environnement Industriel et des Risques (INERIS) | Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH) ; Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Interactions Cellules Environnement - UR (ICE) ; VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS) | Centre de recherches insulaires et observatoire de l'environnement (CRIOBE) ; Université de Perpignan Via Domitia (UPVD)-École Pratique des Hautes Études (EPHE) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS) | Stress Environnementaux et BIOsurveillance des milieux aquatiques (SEBIO) ; Institut National de l'Environnement Industriel et des Risques (INERIS)-Université de Reims Champagne-Ardenne (URCA)-Université Le Havre Normandie (ULH) ; Normandie Université (NU)-Normandie Université (NU)-SFR Condorcet ; Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS)-Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS) | Centre Norbert Elias (CNELIAS) ; École des hautes études en sciences sociales (EHESS)-Avignon Université (AU)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS) | Agroécologie [Dijon] ; Université de Bourgogne (UB)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Dijon ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Laboratoire Chrono-environnement (UMR 6249) (LCE) ; Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC) ; Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC) | Santé et agroécologie du vignoble (UMR SAVE) ; Université de Bordeaux (UB)-Institut des Sciences de la Vigne et du Vin (ISVV)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Dynamique et durabilité des écosystèmes : de la source à l’océan (DECOD) ; Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Office français de la biodiversité (OFB) | Groupe de Recherche en Droit, Economie et Gestion (GREDEG) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA) | Laboratoire d'Etude et de Recherche sur l'Economie, les Politiques et les Systèmes Sociaux (LEREPS) ; Université Toulouse Capitole (UT Capitole) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J) ; Université de Toulouse (UT)-Institut d'Études Politiques [IEP] - Toulouse-École Nationale Supérieure de Formation de l'Enseignement Agricole de Toulouse-Auzeville (ENSFEA) | Environnements et Paléoenvironnements OCéaniques (EPOC) ; Observatoire aquitain des sciences de l'univers (OASU) ; Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Pratique des Hautes Études (EPHE) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS) | Ecologie fonctionnelle et biogéochimie des sols et des agro-écosystèmes (UMR Eco&Sols) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Institut de l'Ouest : Droit et Europe (IODE) ; Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS) | Fonctionnement agroécologique et performances des systèmes de cultures horticoles (UPR HORTSYS) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | MARine Biodiversity Exploitation and Conservation (UMR MARBEC) ; Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM) | Aménagement des Usages des Ressources et des Espaces marins et littoraux - Centre de droit et d'économie de la mer (AMURE) ; Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM) ; Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) | Ecosystèmes aquatiques et changements globaux (UR EABX) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE) ; Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS) | Universitat de Girona (UdG) | Physiologie et Toxines des Microalgues Toxiques et Nuisibles (PHYTOX) ; Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER) | Centre Universitaire de Formation et de Recherche de Mayotte (CUFR) | Unité de Recherches Animal et Fonctionnalités des Produits Animaux (URAFPA) ; Université de Lorraine (UL)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Hydrosystèmes continentaux anthropisés : ressources, risques, restauration (UR HYCAR) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Direction de l'Expertise scientifique collective, de la Prospective et des Etudes ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | French Office for Biodiversity (OFB) through the national ECOPHYTO plan
International audience | Preservation of biodiversity and ecosystem services is critical for sustainable development and human well-being. However, an unprecedented erosion of biodiversity is observed and the use of plant protection products (PPP) has been identified as one of its main causes. In this context, at the request of the French Ministries responsible for the Environment, for Agriculture and for Research, a panel of 46 scientific experts ran a nearly 2-year-long (2020-2022) collective scientific assessment (CSA) of international scientific knowledge relating to the impacts of PPP on biodiversity and ecosystem services. The scope of this CSA covered the terrestrial, atmospheric, freshwater, and marine environments (with the exception of groundwater) in their continuity from the site of PPP application to the ocean, in France and French overseas territories, based on international knowledge produced on or transposable to this type of context (climate, PPP used, biodiversity present, etc.). Here, we provide a brief summary of the CSA's main conclusions, which were drawn from about 4500 international publications. Our analysis finds that PPP contaminate all environmental matrices, including biota, and cause direct and indirect ecotoxicological effects that unequivocally contribute to the decline of certain biological groups and alter certain ecosystem functions and services. Levers for action to limit PPP-driven pollution and effects on environmental compartments include local measures from plot to landscape scales and regulatory improvements. However, there are still significant gaps in knowledge regarding environmental contamination by PPPs and its effect on biodiversity and ecosystem functions and services. Perspectives and research needs are proposed to address these gaps.
Mostrar más [+] Menos [-]Main conclusions and perspectives from the collective scientific assessment of the effects of plant protection products on biodiversity and ecosystem services along the land–sea continuum in France and French overseas territories Texto completo
2025
Pesce, Stephane | Mamy, Laure | Sanchez, Wilfried | Amichot, Marcel | Artigas, Joan | Mongruel, Remi | Munaron, Dominique | Aviron, Stephanie | Barthélémy, Carole | Beaudouin, Rémy | Bedos, Carole | Bérard, Annette | Berny, Philippe | Bertrand, Cédric | Bertrand, Colette | Betoulle, Dtephane | Bureau‑point, Eve | Charles, Sandrine | Chaumot, Arnaud | Chauvel, Bruno | Coeurdassier, Michael | Corio‑costet, Marie-france | Coutellec, Agnes | Crouzet, Olivier | Doussan, Isabelle | Faburé, Juliette | Fritsch, Clémentine | Gallai, Nicola | Gonzalez, Patrice | Gouy, Véronique | Hedde, Mickael | Langlais, Alexandra | Le Bellec, Fabrice | Leboulanger, Christophe | Margoum, Christelle | Martin‑laurent, Fabrice | Morin, Soizic | Mougin, Christian | Nélieu, Sylvie | Pelosi, Celine | Rault, Magali | Sabater, Sergi | Stachowski-haberkorn, Sabine | Sucré, Alliott | Thomas, Marielle | Tournebize, Julien | Leenhardt, Sophie
Preservation of biodiversity and ecosystem services is critical for sustainable development and human well-being. However, an unprecedented erosion of biodiversity is observed and the use of plant protection products (PPP) has been identified as one of its main causes. In this context, at the request of the French Ministries responsible for the Environment, for Agriculture and for Research, a panel of 46 scientific experts ran a nearly 2-year-long (2020–2022) collective scientific assessment (CSA) of international scientific knowledge relating to the impacts of PPP on biodiversity and ecosystem services. The scope of this CSA covered the terrestrial, atmospheric, freshwater, and marine environments (with the exception of groundwater) in their continuity from the site of PPP application to the ocean, in France and French overseas territories, based on international knowledge produced on or transposable to this type of context (climate, PPP used, biodiversity present, etc.). Here, we provide a brief summary of the CSA’s main conclusions, which were drawn from about 4500 international publications. Our analysis finds that PPP contaminate all environmental matrices, including biota, and cause direct and indirect ecotoxicological effects that unequivocally contribute to the decline of certain biological groups and alter certain ecosystem functions and services. Levers for action to limit PPP-driven pollution and effects on environmental compartments include local measures from plot to landscape scales and regulatory improvements. However, there are still significant gaps in knowledge regarding environmental contamination by PPPs and its effect on biodiversity and ecosystem functions and services. Perspectives and research needs are proposed to address these gaps.
Mostrar más [+] Menos [-]Main conclusions and perspectives from the collective scientific assessment of the effects of plant protection products on biodiversity and ecosystem services along the land–sea continuum in France and French overseas territories Texto completo
2025
Pesce, Stéphane | Mamy, Laure | Sanchez, Wilfried | Amichot, Marcel | Artigas, Joan | Aviron, Stéphanie | Barthélémy, Carole | Beaudouin, Rémy | Bedos, Carole | Bérard, Annette | Berny, Philippe | Bertrand, Cédric | Bertrand, Colette | Betoulle, Stéphane | Bureau-Point, Ève | Charles, Sandrine | Chaumot, Arnaud | Chauvel, Bruno | Coeurdassier, Michael | Corio-Costet, Marie-France | Coutellec, Marie-Agnès | Crouzet, Olivier | Doussan, Isabelle | Fabure, Juliette | Fritsch, Clémentine | Gallai, Nicola | Gonzalez, Patrice | Gouy-Boussada, Véronique | Hedde, Mickael | Langlais, Alexandra | Le Bellec, Fabrice | Leboulanger, Christophe | Margoum, Christelle | Martin-Laurent, Fabrice | Mongruel, Rémi | Morin, Soizic | Mougin, Christian | Munaron, Dominique | Nélieu, Sylvie | Pélosi, Céline | Rault, Magali | Sabater, Sergi | Stachowski-Haberkorn, Sabine | Sucré, Elliott | Thomas, Marielle | Tournebize, Julien | Leenhardt, Sophie | RiverLy - Fonctionnement des hydrosystèmes (RiverLy) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER) | Institut Sophia Agrobiotech (ISA) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Côte d'Azur (UniCA) | Laboratoire Microorganismes : Génome et Environnement (LMGE) ; Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA) | Biodiversité agroécologie et aménagement du paysage (UMR BAGAP) ; Ecole Supérieure des Agricultures (ESA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Rennes Angers ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Laboratoire Population-Environnement-Développement (LPED) ; Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU) | Institut National de l'Environnement Industriel et des Risques (INERIS) | Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH) ; Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS) | Interactions Cellules Environnement - UR (ICE) ; VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS) | Centre de recherches insulaires et observatoire de l'environnement (CRIOBE) ; Université de Perpignan Via Domitia (UPVD)-École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS) | Stress Environnementaux et BIOsurveillance des milieux aquatiques (SEBIO) ; Institut National de l'Environnement Industriel et des Risques (INERIS)-Université de Reims Champagne-Ardenne (URCA)-Université Le Havre Normandie (ULH) ; Normandie Université (NU)-Normandie Université (NU)-SFR Condorcet ; Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS)-Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS) | Centre Norbert Elias (CNELIAS) ; École normale supérieure de Lyon (ENS de Lyon) ; Université de Lyon-Université de Lyon-École des hautes études en sciences sociales (EHESS)-Avignon Université (AU)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS) | Modélisation et écotoxicologie prédictives [LBBE] ; Département biostatistiques et modélisation pour la santé et l'environnement [LBBE] ; Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS) | Agroécologie [Dijon] ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Dijon ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université Bourgogne Europe (UBE) | Laboratoire Chrono-environnement (UMR 6249) (LCE) ; Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC) ; Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC) | Santé et agroécologie du vignoble (UMR SAVE) ; Université de Bordeaux (UB)-Institut des Sciences de la Vigne et du Vin (ISVV)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Dynamique et durabilité des écosystèmes : de la source à l’océan (DECOD) ; Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut Agro Rennes Angers ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Service santé de la faune et fonctionnement des écosystèmes agricoles (OFB Service Santé Agri) ; OFB Direction de la recherche et de l’appui scientifique (OFB - DRAS) ; Office français de la biodiversité (OFB)-Office français de la biodiversité (OFB) | Groupe de Recherche en Droit, Economie et Gestion (GREDEG) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA) | École Nationale Supérieure de Formation de l'Enseignement Agricole de Toulouse-Auzeville (ENSFEA) | Laboratoire d'Etude et de Recherche sur l'Economie, les Politiques et les Systèmes Sociaux (LEREPS) ; Université Toulouse Capitole (UT Capitole) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut d'Études Politiques [IEP] - Toulouse-École Nationale Supérieure de Formation de l'Enseignement Agricole de Toulouse-Auzeville (ENSFEA) | Environnements et Paléoenvironnements OCéaniques (EPOC) ; École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) | Ecologie fonctionnelle et biogéochimie des sols et des agro-écosystèmes (UMR Eco&Sols) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Institut de l'Ouest : Droit et Europe (IODE) ; Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS) | Fonctionnement agroécologique et performances des systèmes de cultures horticoles (UPR HORTSYS) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | Département Performances des systèmes de production et de transformation tropicaux (Cirad-PERSYST) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | MARine Biodiversity Exploitation and Conservation - MARBEC (UMR MARBEC) ; Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM) | Aménagement des Usages des Ressources et des Espaces marins et littoraux - Centre de droit et d'économie de la mer (AMURE) ; Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS) | Ecosystèmes aquatiques et changements globaux (UR EABX) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE) ; Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS) | Universitat de Girona = University of Girona (UdG) | Unité Physiologie et Toxines des Microalgues Toxiques et Nuisibles (PHYTOX) ; Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER) | Centre Universitaire de Formation et de Recherche de Mayotte (CUFR) (CUFR) | Unité de Recherches Animal et Fonctionnalités des Produits Animaux (URAFPA) ; Université de Lorraine (UL)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Hydrosystèmes continentaux anthropisés : ressources, risques, restauration (UR HYCAR) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Direction de l'Expertise scientifique collective, de la Prospective et des Etudes (DEPE) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | French Office for Biodiversity (OFB) through the national ECOPHYTO plan | ANR-11-LABX-0066,SMS/SSW,Structurations des mondes sociaux(2011)
International audience | Preservation of biodiversity and ecosystem services is critical for sustainable development and human well-being. However, an unprecedented erosion of biodiversity is observed and the use of plant protection products (PPP) has been identified as one of its main causes. In this context, at the request of the French Ministries responsible for the Environment, for Agriculture and for Research, a panel of 46 scientific experts ran a nearly 2-year-long (2020-2022) collective scientific assessment (CSA) of international scientific knowledge relating to the impacts of PPP on biodiversity and ecosystem services. The scope of this CSA covered the terrestrial, atmospheric, freshwater, and marine environments (with the exception of groundwater) in their continuity from the site of PPP application to the ocean, in France and French overseas territories, based on international knowledge produced on or transposable to this type of context (climate, PPP used, biodiversity present, etc.). Here, we provide a brief summary of the CSA's main conclusions, which were drawn from about 4500 international publications. Our analysis finds that PPP contaminate all environmental matrices, including biota, and cause direct and indirect ecotoxicological effects that unequivocally contribute to the decline of certain biological groups and alter certain ecosystem functions and services. Levers for action to limit PPP-driven pollution and effects on environmental compartments include local measures from plot to landscape scales and regulatory improvements. However, there are still significant gaps in knowledge regarding environmental contamination by PPPs and its effect on biodiversity and ecosystem functions and services. Perspectives and research needs are proposed to address these gaps.
Mostrar más [+] Menos [-]Legacy and emerging per- and polyfluoroalkyl substances in eggs of yellow-legged gulls from Southern France | Legacy and emerging per- and polyfluoroalkyl substances in eggs of yellow-legged gulls from Southern France Texto completo
2025
Jouanneau, William | Boulinier, Thierry | Herzke, Dorte | Nikiforov, Vladimir | Gabrielsen, Geir Wing | Chastel, Olivier
More than 70 years of industrial production of per- and polyfluoroalkyl substances (PFAS) have resulted in their ubiquitous presence in the environment on a global scale, although differences in sources, transport and fate lead to variability of occurrence in the environment. Gull eggs are excellent bioindicators of environmental pollution, especially for persistent organic pollutants such as PFAS, known to bioaccumulate in organisms and to be deposited in bird eggs by maternal transfer. Using yellow-legged gull (Larus michahellis) eggs, we investigated the occurrence of more than 30 PFAS, including the most common chemicals (i.e., legacy PFAS) as well as their alternatives (i.e., emerging PFAS) in the Bay of Marseille, the second largest city in France. Compared to eggs from other colonies along the Mediterranean coast, those from Marseille had PFAS concentrations ranging from slightly higher to up to four times lower, suggesting that this area cannot be specifically identified as a hotspot for these compounds. We also found several emerging PFAS including 8:2 and 10:2 FTS, 7:3 FTCA or PFECHS in all collected eggs. Although the scarcity in toxicity thresholds for seabirds, especially during embryogenesis, does not enable any precise statement about the risks faced by this population, this study contributes to the effort in documenting legacy PFAS contamination on Mediterranean coasts while providing valuable novel inputs on PFAS of emerging concern. Identifying exposure in free-ranging species also participate to determine the main target for toxicity testing in wildlife. | publishedVersion
Mostrar más [+] Menos [-]Anthropogenic compounds in the northernmost Atlantic puffin population | Anthropogenic compounds in the northernmost Atlantic puffin population Texto completo
2025
Underwood, Arin K.P. | Descamps, Sebastien | Sagerup, Kjetil | Herzke, Dorte | Gabrielsen, Geir W.
Contamination by organic pollutants, even in remote regions, poses a growing threat to wildlife, including seabirds. However, for many seabirds breeding at high latitudes, both the extent and nature of contaminant exposure remain largely unknown. This study aimed to identify the persistent organic pollutants (POPs) present in the Svalbard Atlantic puffin Fratercula arctica at the northern limit of its range. We also compare contaminant concentrations with those found in other species breeding on Svalbard and in puffin colonies further south. The Svalbard puffins were found to be contaminated by organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and per- and polyfluoroalkyl substances (PFAS). No significant sex difference was found. OCPs, PCBs and/or PFASs concentrations in Svalbard puffins were comparable to those of Brünnich's guillemots Uria lomvia, black guillemots Cepphus grylle, and/or little auks Alle alle, but lower than in glaucous gulls Larus hyperboreus. PFAS concentrations were also lower than in black-legged kittiwakes Rissa tridactyla. OCP and PCB concentrations were lower on Svalbard than in puffin colonies further south. This study is the first to document PFAS concentrations in puffins, therefore it remains unknown whether PFAS levels were also lower on Svalbard than further south. These comparisons should be interpreted with caution, as data for different species or colonies were collected in different years, and contaminant levels vary over time. The current contaminant concentrations indicate that Svalbard puffins are still at low risk for biological effects, but continued monitoring is needed to assess potential future changes. | publishedVersion
Mostrar más [+] Menos [-]Prevention and management of plant protection product transfers within the environment: A review Texto completo
2025
Tournebize, Julien | Bedos, Carole | Corio-Costet, Marie-France | Douzals, Jean-Paul | Gouy, Véronique | Le Bellec, Fabrice | Achard, Anne-Laure | Mamy, Laure
The intensification of agriculture has promoted the simplification and specialization of agroecosystems, resulting in negative impacts such as decreasing landscape heterogeneity and increasing use of plant protection products (PPP), with the acceleration of PPP transfers to environmental compartments and loss in biodiversity. In this context, the present work reviews the various levers for action promoting the prevention and management of these transfers in the environment and the available modelling tools. Two main categories of levers were identified: (1) better control of the application, including the reduction of doses and of PPP dispersion during application thanks to appropriate equipment and settings, PPP formulations and consideration of meteorological conditions; (2) reduction of post-application transfers at plot scales (soil cover, low tillage, organic matter management, remediation etc. and at landscape scales using either dry (grassed strips, forest, hedgerows and ditches) or wet (ponds, mangroves and stormwater basins) buffer zones. The management of PPP residues leftover in the spray tanks (biobeds) also represents a lever for limiting point-source PPP pollution. Numerous models have been developed to simulate the transfers of PPPs at plot scales. They are scarce for landscape scales. A few are used for regulatory risk assessment. These models could still be improved, for example, if current agricultural practices (e.g. agro-ecological practices and biopesticides), and their effect on PPP transfers were better described. If operated alone, none of the levers guarantee a zero risk of PPP transfer. However, if levers are applied in a combined manner, PPP transfers could be more easily limited (agricultural practices, landscape organization etc.).
Mostrar más [+] Menos [-]Transboundary river water quality assessment: a case study of Kabul River Basin, Pakistan Texto completo
2025
Hussain, Kashif | Iqbal, Muhammad Shahid | Munir, Sarfraz | Bilal, H.
In developing countries, microbial contamination of freshwater resources is a significant public health concern. The concentrations of Escherichia coli (E. coli) and influencing factors in the Kabul River Basin (KRB), Pakistan, were evaluated in this research, using the Soil and Water Assessment Tool (SWAT) model under various climate change scenarios. Streamflow (R2 = 0.66–0.71, NSE = 0.62–0.68) and E. coli (R2 = 0.70, NSE = 0.69) concentrations were utilized to calibrate and validate the model. Higher values of E. coli concentrations (3.55 to 5.20 log cfu/100 ml) were observed during flood events. In 2050, according to Scenario-P1, point sources (human settlements) accounted for 19.7% of E. coli concentrations, non-point sources (livestock) for 46.8%, and upstream sources for 33.5%. This data is based on a moderate growth scenario that incorporates enhanced sanitation. In Scenario-P1, the quantity of E. coli decreased by 70% in comparison to the initial value. Additional advancements in sanitation practices and manure treatment (scenarios Aa, Ab, Ac) resulted in significant decreases in E. coli concentrations, reaching as low as 96%. On the contrary, under standard operating conditions (Scenario-P2), where sanitation and effluent treatment were inadequate, the prevalence of E. coli escalated by 158% by 2050 and further escalated by 201% by 2100. E. coli concentrations were influenced by climate change in conjunction with socioeconomic factors. To reduce E. coli concentrations in the KRB, enhanced sanitation, wastewater treatment, and manure management are emphasized in this study. The findings underscore the urgent need for immediate, robust interventions in wastewater treatment and sanitation infrastructure to prevent further public health risks. Without these critical improvements, the future health of the Kabul River Basin’s population will remain under significant threat from escalating waterborne diseases, exacerbated by climate change.
Mostrar más [+] Menos [-]Hydrochar of Prunus persica: Green promoter of radical species to degrade methylene blue with visible irradiation Texto completo
2025
Sánchez-Silva, Jonathan Michel | Sangare, Diakaridia | Belmonte-Vázquez, José Luis | Aguilar-Aguilar, Angelica | Padilla-Ortega, Erika | González-Chávez, Rodolfo | Ocampo-Pérez, Raúl
The creation of new materials based on metal-free catalysts represents a sustainable alternative in the treatment of water contaminated with dyes. In this context, the use of agro-industrial wastes for the creation of hydrochars with applications in environmental water remediation is an attractive and green option for metal-free catalysts for visible heterogeneous photocatalysis. In this study, hydrochars derived from agro-industrial waste of Prunus persica (peach pit) and their application in visible photodegradation of dyes were performed. The evaluation of the temperature and reaction time of hydrochars showed that 180 °C and 3 h yielded the highest photocatalytic activity and lower energy requirements in their preparation. The electron paramagnetic resonance (EPR) characterization evidenced the presence of persistent free radicals of the oxygen-centered radical type and, together with the oxygenated groups present in the carbonaceous structure of the hydrochar, promoted the generation of radical species such as superoxide and hydroxyl radicals. The visible photodegradation experiments of methylene blue (MB) demonstrated a high degradation efficiency of 92.9% using the following conditions: Ci = 10 mg/L, pH 7.0, hydrochar dosage: 50 mg, V: 50 mL, 120 min of irradiation time, and white-LED irradiation source. In addition, the generation of radicals •OH, O2−•, and 1O2, was demonstrated, as well as the potential use of the hydrochars for photodegradation in tap water and effluent of wastewater treatment plant matrices. Finally, the valorization of Prunus persica biomass through hydrochar production offers a promising avenue for water treatment and a route for the revalorization of agro-industrial waste.
Mostrar más [+] Menos [-]