Inside dynamics of pulled and pushed fronts
2012
Garnier , Jimmy (INRA , Avignon (France). UR 0546 Biostatistique et Processus Spatiaux) | Giletti , Thomas (Aix-Marseille Université, Marseille(France). LATP (UMR 6632), Faculté des Sciences et Techniques) | Hamel , François (Aix-Marseille UniversitéInstitut Universitaire de France, MarseilleParis(France). LATP (UMR 6632), Faculté des Sciences et Techniques) | Roques , Lionel(auteur de correspondance) (INRA , Avignon (France). UR 0546 Biostatistique et Processus Spatiaux)
We investigate the inside structure of one-dimensional reaction-diffusion traveling fronts. The reaction terms are of the monostable, bistable or ignition types. Assuming that the fronts are made of several components with identical diffusion and growth rates, we analyze the spreading properties of each component. In the monostable case, the fronts are classified as pulled or pushed ones, depending on the propagation speed. We prove that any localized component of a pulled front converges locally to 0 at large times in the moving frame of the front, while any component of a pushed front converges to a well determined positive proportion of the front in the moving frame. These results give a new and more complete interpretation of the pulled/pushed terminology which extends the previous definitions to the case of general transition waves. In particular, in the bistable and ignition cases, the fronts are proved to be pushed as they share the same inside structure as the pushed monostable critical fronts. Uniform convergence results and precise estimates of the left and right spreading speeds of the components of pulled and pushed fronts are also established.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par Institut national de la recherche agronomique
Découvrez la collection de ce fournisseur de données dans AGRIS