Genetic Code Expansion System for Tight Control of Gene Expression in Bombyx mori Cell Lines
Wei Lu; Ruolin Wang; Pan Wang; Sanyuan Ma; Qingyou Xia
Inducible gene expression systems are important tools for studying gene function and to control protein synthesis. With the completion of the detailed map of the silkworm (Bombyx mori) genome, the study of Bombyx mori has entered the post-genome era. While the functions of many genes have been described in detail, many coding genes remain unidentified. Except for the available tetracycline induction system, there is currently a dearth of other effective induction systems for B. mori. A genetic code expansion system can be used for protein labeling and to regulate gene expression. Here, we have established a genetic code expansion system for B. mori based on the well-researched tRNAPyl/PylRS pair from Methanosarcina mazei. We used H-Lys(Boc)-OH, which is a lysine derivative to efficiently and tightly control the expression of the reporter gene DsRed[TAG]EGFP (D[TAG]G), which encoded a H-Lys(Boc)-OH-bearing protein fused with DsRed and EGFP (here regarded as D[Boc]G) in B. mori cell lines BmE and BmNs. In D[TAG]G, the amber stop codon is recognized as the orthogonal tRNAPyl. Successful application of genetic code expansion system in silkworm cell lines will support the research into the function of silkworm genes and paves the way for the identification of new genes and protein markers in silkworm.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par Multidisciplinary Digital Publishing Institute
Découvrez la collection de ce fournisseur de données dans AGRIS