Full-Length Transcriptome Analysis of Four Different Tissues of Cephalotaxus oliveri
2021
Ziqing He | Yingjuan Su | Ting Wang
Cephalotaxus oliveri is a tertiary relict conifer endemic to China, regarded as a national second-level protected plant in China. This species has experienced severe changes in temperature and precipitation in the past millions of years, adapting well to harsh environments. In view of global climate change and its endangered conditions, it is crucial to study how it responds to changes in temperature and precipitation for its conservation work. In this study, single-molecule real-time (SMRT) sequencing and Illumina RNA sequencing were combined to generate the complete transcriptome of C. oliveri. Using the RNA-seq data to correct the SMRT sequencing data, the four tissues obtained 63,831 (root), 58,108 (stem), 33,013 (leaf) and 62,436 (male cone) full-length unigenes, with a N50 length of 2523, 3480, 3181, and 3267 bp, respectively. Additionally, 35,887, 11,306, 36,422, and 25,439 SSRs were detected for the male cone, leaf, root, and stem, respectively. The number of long non-coding RNAs predicted from the root was the largest (11,113), and the other tissues were 3408 (stem), 3193 (leaf), and 3107 (male cone), respectively. Functional annotation and enrichment analysis of tissue-specific expressed genes revealed the special roles in response to environmental stress and adaptability in the different four tissues. We also characterized the gene families and pathways related to abiotic factors. This work provides a comprehensive transcriptome resource for C. oliveri, and this resource will facilitate further studies on the functional genomics and adaptive evolution of C. oliveri.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par Directory of Open Access Journals
Découvrez la collection de ce fournisseur de données dans AGRIS