Determination of Nutritive Value and Metabolizable Energy of Nigellasativa Meal Using Leghorn Cockerel and Predicted AMEn Model
2018
Hosseini-vashan, seyyed javad | Ghaznavi, Taherh
Introduction The protein sources in poultry nutrition are the most expensive parts of rations. Today, soybean meal is the major protein source that using in poultry nutrition. The cost of soybean meal is expensive and search to find new source of protein for poultry diet is important. Nigellasativa meal is a protein that could be used in poultry nutrition. The Nigella sativa or cumin seed meal has an acceptable percentage of crude protein, crude fiber, ether extract and metabolizable energy. The amino acid profile of nigella sativa meal is better than soybean meal with the exception for lysine. The percentage of lysine in soybean meal was higher than nigella sativa. Broilers that fed nigella sativa had better performance, and immune system. Therefore, the main objective of the present experiment was conducted to determine metabolizable energy of Nigella sativa or cumin seed meal by adult cockerels.Materials and Methods The nigella sativa meal samples were provided from three industries. The major components of samples involved gross energy, crude protein, crude fiber, ether extract, ash, calcium, available phosphorous were analyzed by AOAC method. The AME of nigella sativa samples were determined by cockerels. A total of sixteen leghorn cockerels were used. The age of cockerels was 31 weeks old. This experiment was done in a completely randomized design with 4 treatments involved 0, 10, 20 and 30 percentage of nigella sativa with 4 replicates (1 cockerel each).The cockerels were adapted to new diets for 3 days, and then they were hunger for 24 hours. Cockerels were fed experimental diets for 72 hours and the excreta were collectedat whole of this period. The excreta and diets samples were analyzed for gross energy, crude protein, crude fiber, ether extract, ash, calcium, available phosphorous were analyzed by AOAC method. The AME of experimental diets were computed by the models of AME (Kcal/kg)= [Fi×GEf)-(E×GEe) ]/ F. Then, AME of experimental feed were calculated by the equations of AMEn(Kcal/kg)=AME of basal diet – [(AME of basal diet – AME of experimental diet)/ levels of replacement].Then, the digestibility and metabolizable energy of diets were determined. The predicted apparent metabolizable energy was corrected for nitrogen (AMEn) was calculated with suggested equations of Nascimento et al. (2007 and 2009).Results and Discussion The cumin seed meal had 92.24 ± 0.723 % dry matter, 30.749 ± 1.151 % crude protein, 7.487 ± 1.129 % ether extract and 7.884 ± 0.813 % crude fiber, 52.871 ± 0.955 % neutral detergent fiber (NDF), 4.999 ± 0.227 % Ash. These findings were in agreement with results of previous researches. Abdo (2004) reported that Nigella sativa had 5.59, 86.8, 31.36, 12.27, 16.52, 7.61, 26.65, 1.16 and 0.7 % moisture, organic matter, crude protein, ether extract, crude fiber, ash, nitrogen free extract (NFE), calcium, and available phosphorous respectively. The apparent metabolizable energy (AME), and nitrogen-corrected apparent metabolizable energy (AMEn) forcumin seed meal were 2234.21 ± 89.596, and 2233.52 ± 89.594, kcal/kg, respectively. Abbas Ali et al., (2012) also reported that nigella sativa is an enrichment of minerals involved sodium, potassium and calcium. The true metabolizable energy (TME) and nitrogen-corrected true metabolizable energy of cumin seed meal were 2298.79 ± 76.254 and 2298.38 ± 76.25 kcal/kg, respectively. There are several equations for predicting the AMEn. Some of this equations that proposed by Nascimento et al., (2007 and 2009) are: 1)AMEn = 2707.71 + 5.863EE− 1.606aNDFom,(R2 = 0.81; RSD = 0.4847; P-value
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par Ferdowsi University of Mashhad
Découvrez la collection de ce fournisseur de données dans AGRIS