Dynamic Model for Assisted Reproductive Technology Outcome Prediction
2021
Kothandaraman,Ranjini | Andavar,Suruliandi | Raj,Raja Soosaimarian Peter
Abstract Infertility is becoming a growing issue in almost all countries. Assisted Reproductive Technologies (ART) are recent development in treating infertility that give hope to the infertile couples. However, the pregnancy rates achieved with the aid of ART is considerably low, as success in ART is not only based on the treatment but also on many other controllable and uncontrollable biological, social, and environmental features. High expenditures and painful process of ART cycles are the two major barriers for opting for ART. Moreover, ART treatments are not covered by any health insurance schemes. Computational prediction models could be used to improve the success rate by predicting the treatment outcome, before the start of an ART cycle. This may suggest the couples and the doctors to decide on the next course of action i.e. either to opt for ART or opt for correcting determinants or quit the ART. With the intension to improve the success rate of ART by providing decision support system to the physicians as well to the patients before entering into the treatment this research work proposes a dynamic model for ART outcome prediction using Machine Learning (ML) techniques. The proposed dynamic model is partially implemented with the help of an ensemble of heterogeneous incremental classifier and its performance is compared with state-of-art classifiers such as Naïve Bayes (NB), Random Forest (RF), K-star etc.,using ART dataset. Performance of the model is evaluated with various metrics such as accuracy, Precision Recall Curve (PRC), Receiver Operating Characteristic (ROC), F-Measure etc., However, ROC cure area is taken as the chief metric. Evaluation results shows that the model achieves the performance with the ROC area value of 94.1 %.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par Scientific Electronic Library Online Brazil
Découvrez la collection de ce fournisseur de données dans AGRIS