References
Abdel-Raouf, H. A. H., El-Neshwy, A. A., Rabie, A. M., and Khalifa, S. A. (2017).
Evaluation of rennet substitute from artichoke (Cynara scolymus L.) flowers extracts:
study the factors affecting the activity of milk clotting. Zagazig Journal of
Agricultural Research, 44(6), 2203-2219.
Abd-El Salam, M., and Benkerroum, N. (2006). North African Brined Cheeses. In: A.
Y. Tamime (Ed.). Brined Cheeses. Oxford, UK: Blackwell Publishing Ltd. (p 174).
Abdelouahab, N., Nabila, B., Roza, S., Slimane, B., Etienne, D., Pascal, A., and
Mouloud, B. M. (2015). Molecular Weight Determination of a Protease Extracted
from Mucor pusillus: Comparison Methods. Food and Nutrition Sciences, 6(03), 348.
Abdullah, A. L., Tengerdy, R. P., and Murphy, V. G. (1985). Optimization of solid
substrate fermentation of wheat straw. Biotechnology and Bioengineering, 27(1), 20-
27.
Abe, M., Abe, K., Kuroda, M., and Arai, S. (1992). Corn kernel cysteine proteinase
inhibitor as a novel cystatin superfamily member of plant origin: molecular cloning
and expression studies. European Journal of Biochemistry, 209(3), 933-937.
Adinarayana, K., Ellaiah, P., and Prasad, D. S. (2003). Purification and partial
characterization of thermostable serine alkaline protease from a newly isolated
Bacillus subtilis PE-11. Aaps Pharmscitech, 4(4), 440-448.
Adrio, J. L., and Demain, A. L. (2006). Genetic improvement of processes yielding
microbial products. FEMS microbiology reviews, 30(2), 187-214.
Adrio, J. L., and Demain, A. L. (2010). Recombinant organisms for production of
industrial products. Bioengineered bugs, 1(2), 116-131.
Aguilar, C. N., Favela-Torres, E., Vinegra-González, G., and Augur, C. (2002).
Culture conditions dictate protease and tannase production in submerged and solidstate
cultures of Aspergillus niger Aa-20. Applied biochemistry and
biotechnology, 102(1), 407-414.Ahmed, I. A. M., Babiker, E. E., and Mori, N. (2010). pH stability and influence of
salts on activity of a milk-clotting enzyme from Solanum dubium seeds and its
enzymatic action on bovine caseins. LWT-Food Science and Technology, 43(5), 759-
764.
Ahmed, S. A., and Helmy, W. A. (2012). Comparative evaluation of Bacillus
licheniformis 5A5 and Aloe variegata milk-clotting enzymes. Brazilian Journal of
Chemical Engineering, 29, 69-76.
Alvarez, V. M., Von der Weid, I., Seldin, L., and Santos, A. L. S. (2006). Influence of
growth conditions on the production of extracellular proteolytic enzymes in
Paenibacillus peoriae NRRL BD-62 and Paenibacillus polymyxa SCE2. Letters in
applied microbiology, 43(6), 625-630.
Amer, A. E.A., Hashem, M. I ., Amer, M. E., and Gomaa A. M. (2015). Using sweet
whey for production of milk clotting enzyme by Mucor miehei NRRL 3420 in
production of white soft cheese. Middle East Journal of Applied Sciences, 5(4), 1068-
1081.
American Cheese Society. (2018). American Cheese Society Cheese and Dairy
Product Lexicon and Glossary. Denver: American Cheese Society. (pp 4-36).
Andrade, V. S., Sarubbo, L. A., Fukushima, K., Miyaji, M., Nishimura, K., and
Campos-Takaki, G. M. D. (2002). Production of extracellular proteases by Mucor
circinelloides using D-glucose as carbon source/substrate. Brazilian Journal of
Microbiology, 33(2), 106-110.
Andre´n, A. (2011). Rennets and Coagulants. In: J. W. Fuquay., P. L. McSweeney., &
P. F. Fox. (Eds.). Encyclopedia of dairy sciences (2nd ed.). UK: Academic Press. (p
576 ).
Araújo, B. F., Ramos, E. L. P., Contiero, J., Ferreira, G. L. S., and Silveira, G. G.
(2015). The role of the type of substrate, particle size, and coagulations analytical
method on microbial rennet synthesis by Mucor miehei Cooney & R. Emers., 1964
(Fungi: Zygomycota) via solid-state fermentation. Brazilian Journal of Biological
Sciences, 2(4), 245-251.
Arima, K., Iwasaki, S., and Tamura, G. (1967). Milk clotting enzyme from
microorganisms: Part I. Screening test and the identification of the potent
fungus. Agricultural and Biological Chemistry, 31(5), 540-545.
Ataci, N., Simsek, G., Atac, I. A., and Kuzu, H. (2009). Temperature and pH Effect
on Milk Clotting Time of Mucor miehei Rennet. Asian Journal of Chemistry, 21(3),
1754-1758.
Auerbach, C. (2013). Mutation research: problems, results and perspectives. New
York: Springer. (p 445).Ayhan, F., Çelebi, S. S., and Tanyolac, A. (2001). The effect of fermentation
parameters on the production of Mucor miehei acid protease in a chemically defined
medium. Journal of Chemical Technology & Biotechnology, 76(2), 153-160.
Bailey, M. J., and Siika-aho, M. (1988). Production of microbial
rennin. Biotechnology Letters, 10(3), 161-166.
Banik, S., Bandyopadhyay, S., and Ganguly, S. (2003). Bioeffects of microwave––a
brief review. Bioresource technology, 87(2), 155-159.
Barrett, A. J. (1994). Classification of peptidases. In: A. J. Barrett (Ed.). Methods in
Enzymology, volume 244, Proteolytic enzymes: serine and cysteine peptidases. San
Diego: Academic press. (p 1).
Barrett, A., Rawlings, N., Woessner, J. (2004). Handbook of Proteolytic Enzymes
Volume 1, Aspartic and Metallo Peptidases (2nd ed.). Oxford, UK: Academic
Press. (p 1).
Benluvankar, V., Priya, S. E., and Gnanadoss, J. J. (2016). Medium Formulation and
its optimization for increased protease production by Penicillium sp. LCJ228 and its
potential in blood stain removal. Journal of Applied Biology & Biotechnology
Vol, 4(01), 020-026.
Berg, J. S., Powell, B. C., and Cheney, R. E. (2001). A millennial myosin census.
Molecular Biology of the Cell 12(4), 780–794.
Berger, H., Basheer, A., Böck, S., Reyes-Dominguez, Y., Dalik, T., Altmann, F., and
Strauss, J. (2008). Dissecting individual steps of nitrogen transcription factor
cooperation in the Aspergillus nidulans nitrate cluster. Molecular microbiology, 69(6),
1385-1398.
Berka, R. M., and Cherry, J. R. (2006). Enzyme biotechnology. In: C. Ratledge & B.
Kristiansen (Eds.). Basic biotechnology (3rd ed.). UK: Cambridge University Press.
(pp 477-478).
Beppu, T., and Nishiyama, M. (2013). Mucorpepsin. In: N. D. Rawlings & G.
Salvesen. (Eds.). Handbook of proteolytic enzymes (3rd ed., Vol. 1). Oxford, UK:
Academic press. (p.p 154-155).
Beyenal, H., Şeker, Ş., Salih, B., and Tanyolaç, A. (1999). The effect of D-glucose on
milk clotting activity of Mucor miehei in a chemostat with biomass retention. Journal
of Chemical Technology & Biotechnology: International Research in Process,
Environmental & Clean Technology, 74(6), 527-532.
Beyzadeoglu, M., Ozyigit, G., and Ebruli, C. (2010). Basic radiation oncology.
Germany: Springer. (p4).Bills, G. F., and Foster, M. S. (2004). Formulae for selected materials used to isolate
and study fungi and fungal allies. In: G. M. Mueller., M. S. Foster., and G. F. Bills
(Eds.). Biodiversity of fungi: inventory and monitoring methods. Burlington, MA,
UK: Elsevier Academic Press. (p 607).
Bisswanger, H. (2011). Practical enzymology (2nd ed., Rev. ed.). Weinheim,
Germany: Wiley-Blackwell. (pp 28-33, 37-38).
Blackwell, M., and Spatafora, J. W. (2004). Fungi and their allies. In: G. M. Mueller.,
M. S. Foster., and G. F. Bills (Eds.). Biodiversity of fungi: inventory and monitoring
methods. Burlington, MA, UK: Elsevier Academic Press. (p 9).
Boon, E., Meehan, C. J., Whidden, C., Wong, D. H. J., Langille, M. G., and Beiko, R.
G. (2014). Interactions in the microbiome: communities of organisms and
communities of genes. FEMS microbiology reviews, 38(1), 90-118.
Boratyński, F., Szczepańska, E., Grudniewska, A., Gniłka, R., and Olejniczak, T.
(2018). Improving of hydrolases biosythesis by solid-state fermentation of Penicillium
camemberti on rapeseed cake. Scientific reports, 8(1), 1-9.
Bowden, M. E., Crow, A. B., and Sullivan, T. (2003). Pharmaceutical achievers: the
human face of pharmaceutical research. USA, Philadelphia: Chemical Heritage Press.
(p 43).
Bozkurt-Cekmer, H., and Davidson, P. M., (2017). Microwaves for microbial
inactivation—efficiency and inactivation kinetics. In M, Regier., K, Knoerzer, & H,
Schubert (Eds.). The microwave processing of foods. Oxford: Woodhead Publishing.
(pp 223-227).
Braga, R. M., Dourado, M. N., and Araújo, W. L. (2016). Microbial interactions:
ecology in a molecular perspective. Brazilian Journal of Microbiology, 47, 86-98.
Bugg, T. D. (2012). Introduction to enzyme and coenzyme chemistry (2nd ed.). UK:
John Wiley & Sons. (p.p 2, 8).
Bulgakova, V. G., Grushina, V. A., Orlova, T. I., Petrykina, Z. M., Polin, A. N., Noks,
P. P., ... & Rubin, A. B. (1996). The effect of millimeter-band radiation of nonthermal
intensity on sensitivity of Staphylococcus to various antibiotics. Biofizika, 41(6),
1289-1293.
Carlile, M. J., Watkinson, S. C., and Gooday, G. W. (2001). The fungi (2nd ed.).
London: Academic Press. (p.p 1, 3, 12-15, 38-43).
Chelius, M. K., and Wodzinski, R. J. (1994). Strain improvement of Aspergillus niger
for phytase production. Applied microbiology and biotechnology, 41(1), 79-83.Chen, X. G., Stabnikova, O., Tay, J. H., Wang, J. Y., and Tay, S. T. L. (2004).
Thermoactive extracellular proteases of Geobacillus caldoproteolyticus, sp. nov., from
sewage sludge. Extremophiles, 8(6), 489-498.
Chisti, Y. (1999). Solid Substrate Fermentations, Enzyme Production, Food
Enrichment. In: M.C. Flickinger., & S.W. Drew (Eds.). Encyclopedia of Bioprocess
Technology: Fermentation, Biocatalysis, and Bioseparation (Vol. 5). New York,
USA: John Wiley and Sons. (p 2455).
Chisti, Y. (2014). Fermentation (Industrial) Basic Considerations. In: Batt. C. A., &
Tortorello. M. L (Eds.). Encyclopedia of Food Microbiology (2nd ed., Vol. 1).
Oxford, UK: Academic Press (pp 751-761).
Chr. Hansen. (n.d.). MICROLANT® Supreme. Retrieved November 10, 2018, from
https://www.chr-hansen.com/en/food-cultures-and-enzymes/cheese/cards/productcards/
microlant-supreme
Chr. Hansen. (2019). BioRen® 97T100 Product Information Version: 3 PI GLOB
EN. Retrieved from
https://hjemmeriet.com/en/ChrHansen/Products/BioRen/PI_GLOB_BioRen_97T100_
410129_EN.pdf
Clark, S., Costello. (2009). Dairy Products Evaluation Competitions. In: S. Clark., M.
Costello., M. Drake., & F. Bodyfelt (Eds.). The sensory evaluation of dairy products
(2nd ed). Springer Science & Business Media. (pp 62-70).
Cooney, D., and Emerson, R. (1964). Thermophilic Fungi: An Account of Their
Biology, Activities, and Classification. San Francisco: W.H. Freeman and Co. (pp 1-
188).
Cooper. J. B. (2013). Endothiapepsin. In: N. D. Rawlings & G. Salvesen. (Eds.).
Handbook of proteolytic enzymes (3rd ed., Vol. 1). Oxford, UK: Academic press. (p
147).
Cornish-Bowden, A. (2014). Current IUBMB recommendations on enzyme
nomenclature and kinetics. Perspectives in Science, 1(1-6), 74-87.
Crawley, M. J. (2007). Statistical Modelling. In: The R book. Chichester, UK: John
Wiley & Sons. (p 327).
Crueger, W., Crueger, A., and Aneja. K. R. (2017). Biotechnology: A Textbook of
Industrial Microbiology (3rd ed). India: Medtech. (pp 70-71).
Dai ,Y.J., Wang, L.M., Jiang, Z.F., Liu, W.Z., Cheng, C., Nan, X.H. and Liu, X.P.
(2014). The effect of cultivation material C/N ratio on the growth and biological
conversion rate of Pleurotus eryngii mycelium. In: F. Zheng (Ed.). Biotechnology,
Agriculture, Environment and Energy. London: CRC Press. (pp 73-76).Dardalhon, M., Averbeck, D., and Berteaud, A. J. (1981). Studies on possible genetic
effects of microwaves in procaryotic and eucaryotic cells. Radiation and
Environmental Biophysics, 20(1), 37-51.
Da Silva, R. R., Souto, T. B., de Oliveira, T. B., de Oliveira, L. C. G., Karcher, D.,
Juliano, M. A., ... and Cabral, H. (2016). Evaluation of the catalytic specificity,
biochemical properties, and milk clotting abilities of an aspartic peptidase from
Rhizomucor miehei. Journal of Industrial Microbiology and Biotechnology, 43(8),
1059-1069.
Davet, P. and Rouxel, F. (2000). Detection and Isolation of Soil Fungi. Plymouth,
United Kingdom: Science Publisher Inc. (p 6-7).
De Hoog, G. S. (2000). Atlas of clinical Fungi (2nd ed.). Washington- USA:
American Society for Microbiology. (pp 95-96).
De Lima, C. J. B., Cortezi, M., Lovaglio, R. B., Ribeiro, E. J., Contiero, J., and De
Araújo, E. H. (2008). Production of rennet in submerged fermentation with the
filamentous fungus Mucor miehei NRRL 3420. World Applied Sciences Journal, 4(4),
578-585.
Demir, H. (2012). Production of pectinase from aspergillus sojae by solid-state
fermentation. Doctoral thesis, School of Engineering and Sciences of İzmir Institute
of Technology, Turkey. (pp 16-17).
De Renobales, M., Virto, M., and Barron, L. J. R. (2013). Rennets and sensory
characteristics of traditional cheeses. In: V. R. Preedy., R. R. Watson., & V. B. Patel
(Eds.). Handbook of cheese in health: Production, nutrition and medical
sciences (Vol. 6). USA: Wageningen Academic Publishers. (p110).
Dhahi, S. J., Habash, R. W. Y., and Al-Hafid, H. T. (1982). Lack of mutagenic effects
on conidia of aspergillus amstelodami irradiated by 8.7175-GHz CW
microwaves. Journal of Microwave Power, 17(4), 345-351.
Dos Santos Bazanella, G. C., Araujo, A. V., Castoldi, R., Maciel, G. M., Inacio, F. D.,
De Souza, C. G. M., ... & Peralta, R. M. (2014). Ligninolytic enzymes from white-rot
fungi and application in the removal of synthetic dyes. In: T. M. Maria de Lourdes &
M. Rai (Eds.). Fungal Enzymes. Boca Raton: CRC Press. (p 263).
Duranti, E., Bolla, P., Caroli, A., Chiofalo, L., Di Stasio, L., Fortina, R., ... & Zullo,
A. (2003). Problems concerning ovine milk clotting aptitude. Italian Journal of
Animal Science, 2(1), 89-95.Dutta, J. R., Dutta, P. K., and Banerjee, R. (2005). Kinetic study of a low molecular
weight protease from newly isolated Pseudomonas sp. using artificial neural network.
Indian Journal of Biotechnology, 4 (1), 127–133.
Dutta, J. R., and Banerjee, R. (2006). Isolation and characterization of a newly
isolated Pseudomonas mutant for protease production. Brazilian archives of biology
and technology, 49 (1), 37-47.
Elgammal, E. W., El-Khonezy, M. I., Ahmed, E. F., and Abd-Elaziz, A. M. (2020).
Enhanced production, partial purification, and characterization of alkaline
thermophilic protease from the endophytic fungus Aspergillus ochraceus
BT21. Egyptian Pharmaceutical Journal, 19(4), 338.
El-Mansi, E. M. T., Bryce, C. F. A., Hartley, B. S., and Demain, A. L. (2006).
Fermentation microbiology and biotechnology: an historical perspective.
In: Fermentation Microbiology and Biotechnology (2nd ed.). USA: CRC press. (pp 1-
8,16-24).
El Soda, M. (1997). Control and enhancement of flavour in cheese. In: B. A. Law
(Ed.). Microbiology and biochemistry of cheese and fermented milk. Boston, MA:
Springer. (p 219 ).
Escobar, J., and Barnett, S. M. (1993). Effect of agitation speed on the synthesis of
Mucor miehei acid protease. Enzyme and microbial technology, 15(12), 1009-1013.
Escobar, J., and Barnett, S. (1995). Synthesis of acid protease from Mucor miehei:
integration of production and recovery. Process biochemistry, 30(8), 695-700.
Eugster, E. (2017). Cheese, Processed Cheese, and Whey. In: B. Elvers (Ed.).
Ullmann's Food and Feed. V2, PART III: Bulk Food Components. Weinheim,
Germany: Wiley-VCH. (p 586).
Fernández-Lahore, H. M., Fraile, E. R., and Cascone, O. (1998). Acid protease
recovery from a solid-state fermentation system. Journal of Biotechnology, 62(2), 83-
93.
Fernandez-Lahore, H. M., Auday, R. M., Fraile, E. R., Cascone, O., Biscoglio de
Jimenez Bonino, M., Pirpignani, L., and Machalinski, C. (1999). Purification and
characterization of an acid proteinase from mesophilic Mucor sp. solid-state
cultures. The Journal of peptide research, 53(6), 599-605.
Fileto-Pérez, H. A., Montoya-Ayón, L. G., Soto-García, E., Páez-Lerma, J. B., Soto-
Cruz, N. O., García-Caballero, B. E., and Rutiaga-Quiñones, J. G. (2020). Effect of
fermentation time and acid casein concentration as nitrogen source on microbial
rennet production. Journal of Dairy Research, 87(3), 379-381.
Foda, M., Moharam, M., Ramadan, M., and El-bendary, M. (2012). Over production
of milk clotting enzyme from Rhizomucor miehei through adjustment of growth undersolid state fermentation conditions. Australian Journal of basic and applied science, 6
(8), 579-589.
Foltmann, B. (1993). General and molecular aspects of rennets. In P. F. Fox
(Ed.). Cheese: chemistry, physics and microbiology. Boston, MA: Springer. (pp. 37-
68).
Food and Drug Administration. (2022, January 9). Code of Federal Regulations, 21
CFR 184.1685 - rennet (animal-derived) and chymosin preparation (fermentationderived).
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr
=184.1685&SearchTerm=rennet
Fortune Business Insight. (2022). Cheese Market Size, Share & COVID 19 Impact
Analysis, By Source (Animal based and Plant based), Product Type (Cheddar,
Mozzarella, Parmesan, Feta, and Others), Type (Processed, Natural, Block,
Spreadable, and Hard & Soft Cheese), Distribution Channel
(Supermarkets/Hypermarkets, Specialty Stores, Convenience Stores, and Online
Retail), and Regional Forecast, 2021-2028. Retrieved August 17, 2022, from
https://www.fortunebusinessinsights.com/cheese-market-104293
Fox, P. F., and Walley, B. F. (1971). Influence of sodium chloride on the proteolysis
of casein by rennet and by pepsin. Journal of Dairy Research, 38(02), 165-170.
Fox, P. F. (1993). Cheese: An Overview. In: P. F. Fox (Ed.). Cheese: Chemistry,
Physics and Microbiology, Volume 1: General Aspects (2nd ed.). UK: Springer. (pp
8-9).
Fox, P. F., and McSweeney, P. L. H. (1997). Rennets: their role in milk coagulation
and cheese ripening. In: B. A. Law (Ed.). Microbiology and biochemistry of cheese
and fermented milk. Boston, MA: Springer. (p 1-14 ).
Fox, P. F., Guinee, T. P., Cogan, T. M., and McSweeney, P. L. (2017). Fundamentals
of cheese science (2nd ed.). New York: Springer. (p. 315).
Gancedo, J. M. (1998). Yeast carbon catabolite repression. Microbiology and
molecular biology reviews, 62(2), 334-361.
Garfin, D. E. (2009). One-Dimensional Gel Electrophoresis. In: R. R. Burgess & M.
P. Deutscher (Eds.). Methods In Enzymology Volume 463, Guide To Protein
Purification (2nd ed.). Oxford, UK: academic press. (pp 502-511).
Gaur, R., Singh, A., Tripathi, A., and Singh, R. (2017). Bioreactors. In: R. L. Singh
(Ed.). Principles and Applications of Environmental Biotechnology for a Sustainable
Future. Singapore: Springer. (p 240).
Gessesse, A., Hatti-Kaul, R., Gashe, B. A., and Mattiasson, B. O. (2003). Novel
alkaline proteases from alkaliphilic bacteria grown on chicken feather. Enzyme and
Microbial Technology, 32(5), 519-524.Ghazi, S., Sepahy, A. A., Azin, M., Khaje, K., and Khavarinejad, R. (2014). UV
mutagenesis for the overproduction of xylanase from Bacillus mojavensis PTCC 1723
and optimization of the production condition. Iranian journal of basic medical
sciences, 17(11), 844-853.
Glass, R. E. (1982). Gene function: E. coli and its heritable elements. USA: Univ of
California Press. (p 118).
Gowthaman, M. K., Krishna, C., and Moo-Young, M. (2001). Fungal solid state
fermentation—an overview. Applied mycology and biotechnology, 1, 305-352.
Green, M. L., and Grandison, A. S. (1993). Secondary (non-enzymatic) phase of
rennet coagulation and post-coagulation phenomena. In P. F. Fox (Ed.). Cheese:
Chemistry, Physics and Microbiology, Volume 1: General Aspects (2nd ed.). UK:
Springer. (pp 118-133).
Grünefeld, P., and Richert, C. (2006). Effect of microwave irradiation on
phosphoramidite couplings on controlled pore glass. Nucleosides, Nucleotides, and
Nucleic Acids, 25(7), 815-821.
Hajji, M., Kanoun, S., Nasri, M., and Gharsallah, N. (2007). Purification and
characterization of an alkaline serine-protease produced by a new isolated Aspergillus
clavatus ES1. Process Biochemistry, 42(5), 791-797.
Haldane, J. B. S. (1965). Enzymes. Cambridge: MIT Press Classics, (originally
publisher, Longmans, Green, 1930). (p 84).
Hamnerius, Y., Rasmuson, Å., and Rasmuson, B. (1985). Biological effects of
high-frequency electromagnetic fields on Salmonella typhimurium and Drosophila
melanogaster. Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The
Society for Physical Regulation in Biology and Medicine, The European
Bioelectromagnetics Association, 6(4), 405-414.
Harboe, M., Broe, M. L., and Qvist, K. B. (2010). The Production, Action and
Application of Rennet and Coagulants. In: B. A. Law & A. Y. Tamime (Eds.).
Technology of cheesemaking (2nd ed.). Singapore: John Wiley & Sons. (pp 100-101,
124-125).
Harvey, L. M., and McNeil, B. (1994). Liquid fermentation systems and product
recovery of Aspergillus. In: J. E. Smith (Ed.). Biotechnology Handbooks. Volume
7. Aspergillus. New York: Springer Science+Business Media, LLC. (p.p 150, 165).
Hawksworth, D. L., and Lücking, R. (2017). Fungal diversity revisited: 2.2 to 3.8
million species. Microbiology spectrum, 5(4), 5-4.
Hawley, R. S., and Walker, M. (2003). Advanced genetic analysis: finding meaning in
a genome. UK: Blackwell Publishing. (p.p 9-11, 40-41).Heflich, R. H. (1991). Chemical mutagens. In: A. P. Li., & R. H. Heflich (Eds.).
Genetic Toxicology. USA: CRC press. (p.p 143, 145, 186-188, 192-193).
Hibbett, D. S., Binder, M., Bischoff, J. F., Blackwell, M., Cannon, P. F., Eriksson, O.
E., ... & Lumbsch, H. T. (2007). A higher-level phylogenetic classification of the
Fungi. Mycological research, 111(5), 509-547.
Horne, D. S., and Lucey, J. A. (2017). Rennet-induced Coagulation of Milk. In: P. L.
H. McSweeney., P. F. Fox., P. D. Cotter., and D. W. Everett. Cheese: Chemistry,
physics and microbiology. Volume 1. General aspects (4th ed.). UK: Elsevier
Academic Press. (p 121).
Hossain, T. M. D. T., Das, F. L. O. R. A., Marzan, L. W., Rahman, M. S., and Anwar,
M. N. (2006). Some properties of protease of the fungal strain Aspergillus flavus. Int J
Agric Biol, 8(2), 162-164.
Hunter, T. (1995) Protein kinases and phosphatases: the yin and yang of protein
phosphorylation and signaling. Cell 80(2), 225–236.
Huppertz, T., and Fox, P. F. (2006). Effect of NaCl on some physico-chemical
properties of concentrated bovine milk. International Dairy Journal, 16(10), 1142–
1148.
Illanes, A. (2008). Enzyme biocatalysis: principles and applications. Netherlands:
Springer Science & Business Media. (p.p 4, 5, 16-18, 62-63).
Iwasaki, S., Tamura, G. and Arima, K. (1967). Milk clotting enzyme from
microorganisms: Part II. The enzyme production and the properties of crude
enzyme. Agricultural and Biological Chemistry, 31(5), 546-551.
Jacob, M., Jaros, D., and Rohm, H. (2010). The effect of coagulant type on yield and
sensory properties of semihard cheese from laboratory-, pilot-and commercial-scale
productions. International journal of dairy technology, 63(3), 370-380.
Jain, J. L. (2004). Fundamentals of biochemistry. S. New Delhi: Chand Publishing. (p
338).
Jeyanthi, G. P. (2009). Molecular Biology. Chennai, India: MJP Publishers. (pp 257-
258).
Jin, Q., and Kirk, M. F. (2018). pH as a primary control in environmental
microbiology: 1. thermodynamic perspective. Frontiers in Environmental Science, 6:
21, 1-22.
Joint Food and Agriculture Organization of the United Nations/World Health
Organization Expert Committee on Food Additives. (1974). Evaluation of certain
food additives: eighteenth report of the Joint FAO/WHO. Geneva: FAO & WHO. (p
34).Karcher, S. J. (1995). Molecular biology: a project approach. San Diego, California:
Academic Press, Inc. (pp 170-171).
Katoh, S., Horiuchi, J. I., and Yoshida, F. (2015). Biochemical engineering: a
textbook for engineers, chemists and biologists (2nd ed., Rev. ed.). Weinheim,
Germany: John Wiley & Sons. (p191).
Kazemi-Vaysari, A., Kheirolomoom, A., Arjmand, M., and Habibollahi, M. (2002).
Optimization of Mucor miehei Rennin production and recovery. Scientia Iranica,
9(1), 99-104.
Keasling, J. D. (2012). Synthetic biology and the development of tools for metabolic
engineering. Metabolic engineering, 14(3), 189-195.
Khademi, F., Abachi, S., Mortazavi, A., Ehsani, M. A., Tabatabaei, M. R., and
Malekzadeh, F. A. (2013). Optimization of fungal rennet production by local isolate
of Rhizomucor miehei under solid substrate fermentation system. Journal of
pharmacy and Biological science, 5(2), 115-121.
Khalil Moghaddam, S., Khaleghian, M., Naderi, F., Azin, M., and Monajjemi, M.
(2008). Purification and characterization of milk clotting enzyme produced by
Rhizomucor Rmiehei. Journal of Physical & Theoretical Chemistry, 5(3), 29-34.
Khan, A. R., and James, M. N. (1998). Molecular mechanisms for the conversion of
zymogens to active proteolytic enzymes. Protein Science, 7(4), 815-836.
Khattab, A. A., and Bazaraa, W. A. (2005). Screening, mutagenesis and protoplast
fusion of Aspergillus niger for the enhancement of extracellular glucose oxidase
production. Journal of Industrial Microbiology and Biotechnology, 32(7), 289-294.
Kidd, S., Halliday, C. L., Alexiou, H., and Ellis, D. (2016). Descriptions of medical
fungi (3rd ed.). Adelaide, South Australia: the Authors. (p. 232).
Kokkonen, P., Beier, A., Mazurenko, S., Damborsky, J., Bednar, D., and Prokop, Z.
(2021). Substrate inhibition by the blockage of product release and its control by
tunnel engineering. RSC chemical biology, 2(2), 645-655.
Krishna, C. (2005). Solid-state fermentation systems—an overview. Critical reviews
in biotechnology, 25(1-2), 1-30.
Kumar, A. K., Parikh, B. S., Singh, S. P., and Shah, D. (2015). Use of combined UV
and chemical mutagenesis treatment of Aspergillus terreus D34 for hyper-production
of cellulose-degrading enzymes and enzymatic hydrolysis of mild-alkali pretreated
rice straw. Bioresources and Bioprocessing, 2, 35, 1-11.
Kunitz, M. (1947). Crystalline soybean trypsin inhibitor: II. General properties. The
Journal of General Physiology, 30(4), 291-310.Lackner, M., Caramalho, R., and Lass-Flörl, C. (2014). Laboratory diagnosis of
mucormycosis: current status and future perspectives. Future microbiology, 9(5), 683-
695.
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the
head of bacteriophage T4. nature, 227(5259), 680-685.
Lai, Y. P., Huang, J., Wang, L. F., Li, J., and Wu, Z. R. (2004). A new approach to
random mutagenesis in vitro. Biotechnology and bioengineering, 86(6), 622-627.
Lambert, P. W., and Meers, J. L. (1983). The production of industrial
enzymes. Philosophical Transactions of the Royal Society of London. Series B,
Biological Sciences, 300(1100), 263-282.
Lario, L. D., Pillaca-Pullo, O. S., Sette, L. D., Converti, A., Casati, P., Spampinato,
C., and Pessoa, A. (2020). Optimization of protease production and sequence analysis
of the purified enzyme from the cold adapted yeast Rhodotorula mucilaginosa
CBMAI 1528. Biotechnology Reports, 28, e00546, 1-9.
Law, B. A. (2002). Enzymes in the manufacture of dairy products. In: R. J.
Whitehurst., & B. A. Law (Eds.). Enzymes in Food Technology. UK: Sheffield
Academic Press. (91-94).
Law. B. A. (2010). Enzymes in dairy product manufacture. In: R. J. Whitehurst & M.
Van Oort (Eds.). Enzymes in Food Technology (2nd ed.). Chinchester: Wiley-
Blackwell. (p.p 88-89, 91).
Li, X. H., Yang, H. J., Roy, B., Park, E. Y., Jiang, L. J., Wang, D., & Miao, Y. G.
(2010). Enhanced cellulase production of the Trichoderma viride mutated by
microwave and ultraviolet. Microbiological Research, 165(3), 190-198.
Lineweaver, H., and Burk, D. (1934). The determination of enzyme dissociation
constants. Journal of the American chemical society, 56(3), 658-666.
Lonsane, B., and Krishnaiah, M. (1992). Leaching the product and further
downstream processing. In: H. W. Doelle., D. A. Mitchell., and C. E. Rolz, (eds.).
Solid Substrate Cultivation. London, UK: Elsevier Applied Science. (pp 157-158).
Losso, J. N. (2008). The biochemical and functional food properties of the Bowman-
Birk inhibitor. Critical reviews in food science and nutrition, 48(1), 94-118.
Lowry, O., Rosebrough, N., Farr, A. L., and Randall, R. (1951). Protein measurement
with the Folin phenol reagent. Journal of biological chemistry, 193(1), 265-275.
Macauley-Patrick, S., and Finn, B. (2008). Modes of fermenter operation. In: B.
McNeil & L. Harvey (Eds.). Practical fermentation technology. West Sussex,
England: John Wiley and Sons, Ltd. (pp 71-72).Maggi, M., Mittelman, S. D., Parmentier, J. H., Colombo, G., Meli, M., Whitmire, J.
M., ... & Scotti, C. (2017). A protease-resistant Escherichia coli asparaginase with
outstanding stability and enhanced anti-leukaemic activity in vitro. Scientific
reports, 7(1), 1-16.
Maier, R. M., and Pepper, I. L. (2015). Bacterial growth. In: I. L. Pepper., C. P.
Gerba., and T. J. Gentry (Eds.). Environmental Microbiology (3rd ed.). Oxford, UK;
Academic Press. (pp 38-41).
Mamo, J., Kangwa, M., Fernandez-Lahore, H. M., and Assefa, F. (2020).
Optimization of media composition and growth conditions for production of milkclotting
protease (MCP) from Aspergillus oryzae DRDFS13 under solid-state
fermentation. Brazilian Journal of Microbiology, 51(2), 571-584.
Manjrekar, S., Wadekar, T., and Sumant, O. (2021, March). Enzymes Market- Global
Opportunity Analysis and Industry Forecast, 2020–2027. Allied Market Research.
https://www.alliedmarketresearch.com/enzymes-market
Manoliu, A., Tufescub, F. M., Opricaa, L., Olteanua, Z., and Creangab, D. E. (2004).
Microwave Influence in Fungi-a Preliminary Study. Proceedings of the 11th
International Congress of the International Radiation Protection Association,
Madrid. Spain, 35(34), 1-8.
Mantle, D., and Preedy, V. R. (2002). Adverse and beneficial functions of proteolytic
enzymes in skeletal muscle. Adverse drug reactions and toxicological reviews, 21(1),
31-49.
Marzluf, G. A. (1997). Genetic regulation of nitrogen metabolism in the
fungi. Microbiology and Molecular Biology Reviews, 61(1), 17-32.
Mattern, I. E., van Noort, J. M., van den Berg, P., Archer, D. B., Roberts, I. N., and
van den Hondel, C. A. (1992). Isolation and characterization of mutants of Aspergillus
niger deficient in extracellular proteases. Molecular and General Genetics
MGG, 234(2), 332-336.
McNeil, B., and Harvey, L. (2008). The Design and Preparation of Media for
Bioprocesses. In: Practical fermentation technology. West Sussex, England: John
Wiley and Sons, Ltd. (pp 99-109).
Meltz, M. L. (1991). Physical mutagens. In: A. P. Li., & R. H. Heflich (Eds.). Genetic
Toxicology. USA: CRC press. (pp 206, 225-229).
Mezykowski, T., Bal, J., Debiec, H., and Kwarecki, K. (1980). Response of
Aspergillus nidulans and Physarum polycephalum to microwave irradiation. Journal
of Microwave Power.15(2), 75-80.
Miglani, G. S. (2002). Advanced genetics. UK: Alpha science international Ltd. (p.p
92, 110).Minitab Inc.( n.d.). Model reduction. Retrieved March 10, 2022, from
https://support.minitab.com/en-us/minitab/18/help-and-how-to/modelingstatistics/
regression/supporting-topics/regression-models/model-reduction/
Mitchell, D. A. (1992). Microbial basis of processes. In: H. W. Doelle., D. A.
Mitchell., and C. E. Rolz, (eds.). Solid Substrate Cultivation. London, UK: Elsevier
Applied Science. (pp 25–26).
Mitchell, D. A., Srinophakun, P., Krieger, N., and von Meien, O. F. (2006). Group II
bioreactors: forcefully-aerated bioreactors without mixing. In: D. A. Mitchel., M.
Berovič., & N. Krieger. Solid-state fermentation bioreactors: Fundamentals of design
and operation. Berlin, Heidelberg: Springer. (p 91).
Mótyán, J. A., Tóth, F., and Tőzsér, J. (2013). Research applications of proteolytic
enzymes in molecular biology. Biomolecules, 3(4), 923-942.
Mueller, G. M., and Bills, G. F. (2004). Introduction. In: G. M. Mueller., M. S.
Foster., and G. F. Bills (Eds.). Biodiversity of fungi: inventory and monitoring
methods. Burlington, MA, UK: Elsevier Academic Press. (p 1).
Mujica, M. Á., Matute-Almeida, L., Rodas-Espinoza, S., Román-Rojas, H., &
Vargas-Guzmán, D. (2020). Influence of stirring speed, initial pH and fermentation
time on obtaining microbial rennet from Rhizomucor miehei. Biotecnología
Aplicada, 37(3), 3201-3207.
Nadeem, M., Qazi, J. I., and Baig, S. (2010). Enhanced production of alkaline
protease by a mutant of Bacillus licheniformis N-2 for dehairing. Brazilian Archives
of Biology and Technology, 53(5), 1015-1025.
Nandakumar, M. P., Thakur, M. S., Raghavarao, K. S. M. S., and Ghildyal, N. P.
(1999). Studies on catabolite repression in solid state fermentation for biosynthesis of
fungal amylases. Letters in Applied Microbiology, 29(6), 380-384.
Nooralabettu, K. P. (2014). Optimisation of ammonium sulfate precipitation method
to achieve high throughput concentration of crude alkaline phosphatase from Brown
shrimp (Metapenaeus monoceros) hepatopancreas. International Journal of Analytical
Bio-Science, 2(1), 7-16.Nurkasanah, S., and Widodo, N. (2015). The Effect of Different Media Content on
Protease Activity Bacillus subtilis. Biotropika: Journal of Tropical Biology, 3(2),
104-106.
Okpara, M. O., Bamidele, O. S., and Ajele, J. O. (2019). Enhanced Production of
Salinity-Induced Proteases from Aspergillus flavus and Aspergillus niger. Advances in
Enzyme Research, 7(4), 45-56.
Ooijkaas, L. P., Weber, F. J., Buitelaar, R. M., Tramper, J., and Rinzema, A. (2000).
Defined media and inert supports: their potential as solid-state fermentation
production systems. Trends in Biotechnology, 18(8), 356-360.
Ottens, M., Wesselingh, J. A., and van der Wielen, L. A. M. (2006). Downstream
processing. In: Ratledge, C., & Kristiansen, B. (Eds.). Basic biotechnology (3rd ed.).
UK: Cambridge University Press. (pp 219-250).
Pandey, A., Selvakumar, P., Soccol, C. R., and Nigam, P. (1999). Solid state
fermentation for the production of industrial enzymes. Current science, 149-162.
Pandey, A., Soccol, C. R., and Mitchell, D. (2000). New developments in solid state
fermentation: I-bioprocesses and products. Process biochemistry, 35(10), 1153-1169.
Pandey, A., Soccol, C. R., and Larroch, C. (2008). Current Developments In Solid-
State Fermentation. India: Springer Science & Business Media, LLC. (pp 3, 13, 22,
23).
Papp, T., Nyilasi, I., Takó, M., Nagy, L. G., and Vágvölgyi, C. (2011). Rhizomucor.
In: D. Liu (Ed.). Molecular detection of human fungal pathogens. Boca Raton, FL:
Taylor & Francis Group, LLC. (p 783-790).
Pérez-Guerra, N., Torrado-Agrasar, A., López-Macias, C., and Pastrana, L. (2003).
Main characteristics and applications of solid substrate fermentation. Electronic
Journal of Environmental, Agricultural and Food Chemistry, 2(3), 343-350.
Pham, C. H., Collier, Z. J., Fang, M., Howell, A., and Gillenwater, T. J. (2019). The
role of collagenase ointment in acute burns: a systematic review and metaanalysis.
Journal of wound care, 28(2), 9-15.
Piscitelli, A., Pezzella, C., Lettera, V., Giardina, P., Faraco, V., and Sannia, G. (2014).
Fungal laccases: structure, function and application. In: T. M. Maria de Lourdes & M.
Rai (Eds.). Fungal Enzymes. Boca Raton: CRC Press. (p 121).Preetha, S., and R. Boopathy. (1994). Influence of culture conditions on the
production of milk clotting enzyme from Rhizomucor. World Journal of
Microbiology & Biotechology. 10, 527-530.
Preetha, S., and Boopathy, R. (1997). Purification and characterization of a milk
clotting protease from Rhizomucor miehei. World Journal of Microbiology and
Biotechnology, 13(5), 573-578.
Prescott, L. M. (2002). Microbiology (5th ed.). New York: McGraw-Hill. (p 96).
Quaglia, G. B., and Gennaro, L. (2003). ENZYMES| Uses in Food
Processing. In: Caballero, B. (Ed.). Encyclopedia of Food Sciences and Nutrition
(Second Edition). San Diego, CA, USA: Academic Press. (p 2133-2134).
Radha, S., Babu, R. H., Sridevi, A., Prasad, N. B. L., and Narasimha, G. (2012).
Development of mutant fungal strains of Aspergillus niger for enhanced production of
acid protease in submerged and solid state fermentation. European Journal of
Experimental Biology, 2(5), 1517-1528.
Raimbault, M. (1998). General and microbiological aspects of solid substrate
fermentation. Electronic Journal of Biotechnology, 1(3), 26-27.
Ramet, J. P. (2001). ways of improving cheese made from camel milk. In: The
technology of making cheese from camel milk (Camelus dromedarius) (No. 113).
Food & Agriculture Org. (p 21).
Rao, M. B., Tanksale, A. M., Ghatge, M. S., and Deshpande, V. V. (1998). Molecular
and biotechnological aspects of microbial proteases. Microbiology and molecular
biology reviews, 62(3), 597-635.
Rao, H. G., Shravani, H. N., Vutukuru, S. S., Subramanyam, K., and Rajasekhar, P.
(2012). Strain improvement by classical mutagenesis for L-arginine production.
International Journal of Science & Technology, 2(4), 16-26.
Rasband, W. S. (n.d). ImageJ. U. S. National Institutes of Health, Bethesda,
Maryland, USA https://imagej.nih.gov/ij/
Rawlings, N. D., Barrett, A. J., and Bateman, A. (2011). Asparagine Peptide Lyases:
A seventh catalytic type of proteolytic enzymes. Journal of Biological
Chemistry, 286(44), 38321-38328Rawlings, N. D. (2013). Protease Families, Evolution and Mechanism of Action. In:
K. Brix & W. Stöcker (Eds.). Proteases: structure and function. Vienna: Springer-
Verlag Wien. (p 1-7).
Ribeiro, O., Magalhães, F., Aguiar, T. Q., Wiebe, M. G., Penttilä, M., and
Domingues, L. (2013). Random and direct mutagenesis to enhance protein secretion
in Ashbya gossypii. Bioengineered, 4(5), 322-331.
Ribes, J. A., Vanover-Sams, C. L., and Baker, D. J. (2000). Zygomycetes in human
disease. Clinical microbiology reviews, 13(2), 236-301.
Roberts, S. M., and Gibb, A. J. (2013). Introduction to enzymes, receptors and the
action of small molecule drugs. In: R. Ganellin., S. Roberts., and R. Jefferis
(Eds.). Introduction to Biological and Small Molecule Drug Research and
Development; theory and case studies. UK: Elsevier. (pp. 1-55).
Robinson, P. K. (2015). Enzymes: principles and biotechnological
applications. Essays in biochemistry, 59, 1-41.
Rodriguez-Leon, J. A., Rodriguez-Fernandez, D. E., and Soccol, C. R. (2013).
Laboratory and industrial bioreactors for solid state fermentation. In: C. R. Soccol., A.
Pandey, and C. Larroche (Eds.). Fermentation Processes Engineering in the Food
Industry, Contemporary Food Engineering. Boca Raton, Florida, USA: CRC Press.
(pp 183-185).
Saito, M., and Machida, S. (1999). A rapid identification method for aflatoxinproducing
strains of Aspergillus flavus and A. parasiticus by ammonia
vapor. Mycoscience, 40(2), 205-208.
Sardinas, J. L. (1972). Microbial rennets. In D. Perlman (Ed.). Advances in Applied
Microbiology (Vol. 15). New York: Academic Press, INC. (pp. 39-73).
Sato, S., Shibata, C., and Yazu, M. (1996). Nonthermal killing effect of microwave
irradiation. Biotechnology techniques, 10(3), 145-150.
Schäfer, T. (2007). Discovering new industrial enzymes for food applications. In R.
Rastall (Ed.). Novel Enzyme Technology for Food Applications. Cambridge:
Woodhead Publishing Limited. (p 3).
Schipper, M. A. A. (1978). On the genera Rhizomucor and Parasitella. Studies in
Mycology, 17, 53-71.
Schomburg, D., Schomburg, I., Chang, A. (2002). Springer Hand Book Of Enzymes:
Class 3.4 Hydrolases III: EC 3.4.23 - 3.4.99, Voume 8 (2nd ed.). Germany: Springer
Science & Business Media. (pp 108-109).
Scott, R., Scott, J. E., Robinson, R. K., and Wilbey, R. A. (1998). Cheesemaking
practice (3rd ed.). New York: Springer Science & Business Media. (p 154- 157).Şeker, Ş., Beyenal, H., Ayhan, F., and Tanyolaç, A. (1998). Production of microbial
rennin from Mucor miehei in a continuously fed fermenter. Enzyme and Microbial
Technology, 23(7-8), 469-474.
Seker, S., Beyenal, H., and Tanyolac, A. (1999). Modeling milk clotting activity in
the continuous production of microbial rennet from Mucor miehei. Journal of food
science, 64(3), 525-529.
Shah, M. A., Mir, S. A., and Paray, M. A. (2014). Plant proteases as milk-clotting
enzymes in cheesemaking: a review. Dairy science & technology, 94(1), 5-16.
Shahbandeh, M. (2022). Annual cheese production worldwide from 2015 to 2021.
Retrieved August 17, 2022 from https://www.statista.com/statistics/1120911/cheeseproduction-
worldwide/
Shamis, Y., Taube, A., Mitik-Dineva, N., Croft, R., Crawford, R. J., and Ivanova, E.
P. (2011). Specific electromagnetic effects of microwave radiation on Escherichia
coli. Applied and Environmental Microbiology, 77(9), 3017-3022.
Sharma, A. K., and Singh, S. P. (2016). Effect of amino acids on the repression of
alkaline protease synthesis in haloalkaliphilic Nocardiopsis
dassonvillei. Biotechnology Reports, 12, 40-51.
Sharma, K. M., Kumar, R., Panwar, S., and Kumar, A. (2017). Microbial alkaline
proteases: Optimization of production parameters and their properties. Journal of
Genetic Engineering and Biotechnology, 15(1), 115-126.
Shaw, P., Kumar, N., Mumtaz, S., Lim, J. S., Jang, J. H., Kim, D., ... & Choi, E. H.
(2021). Evaluation of non-thermal effect of microwave radiation and its mode of
action in bacterial cell inactivation. Scientific Reports, 11(1), 1-12.
Shibai, A., Takahashi, Y., Ishizawa, Y., Motooka, D., Nakamura, S., Ying, B. W., and
Tsuru, S. (2017). Mutation accumulation under UV radiation in Escherichia
coli. Scientific reports, 7(1), 1-12.
Siala, R., Frikha, F., Mhamdi, S., Nasri, M., and Sellami Kamoun, A. (2012).
Optimization of acid protease production by Aspergillus niger I1 on shrimp peptone
using statistical experimental design. The Scientific World Journal, V 2012, Article
564932.
SIGMA-ALDRICH. (n.d.-a). Lipase from Aspergillus oryzae. Retrieved February 13,
2022, from https://www.sigmaaldrich.com/DE/en/product/sigma/l0777
SIGMA-ALDRICH. (n.d.-b). Protease from Aspergillus oryzae. Retrieved February
13, 2022, from https://www.sigmaaldrich.com/DE/en/product/sigma/p6110
SIGMA-ALDRICH. (n.d.-c). Cellulase from Trichoderma reesei. Retrieved February
13, 2022, from https://www.sigmaaldrich.com/DE/en/product/sigma/c2730SIGMA-ALDRICH. (n.d.-d). Cellulase from Aspergillus sp.. Retrieved February 13,
2022, from https://www.sigmaaldrich.com/DE/en/product/sigma/c2605
SIGMA-ALDRICH. (n.d.-e). Dextranase from Chaetomium erraticum. Retrieved
February 13, 2022, from https://www.sigmaaldrich.com/DE/en/product/sigma/d0443
Silveira, G. G., Oliveira, G. M., Ribeiro, E. J., Monti, R., and Contiero, J. (2005).
Microbial Rennet Produced by Mucor miehei in Solid-State and Submerged
Fermentation. Brazilian Archives of Biotechnology, 48(6), 931-937.
Sing, S. K., Sczakase, G., Soccol, C. R., and Pandey, A. (2008). Production of
Enzymes by Solid-State Fermentation. In: A. Pandey., C. R. Soccol., & C. Larroche
(Eds.). Current developments in solid-state fermentation. India: Springer Science &
Business Media, LLC. (pp 196-197).
Sipos, P., Tóth, Á., Elek, Á., and Győri, Z. (2005). Investigation of carbon content
and C/N ratio in flours from maturing wheats. Cereal Research
Communications, 33(1), 403-406.
Soghomonyan, D., Trchounian, K., and Trchounian, A. (2016). Millimeter waves or
extremely high frequency electromagnetic fields in the environment: what are their
effects on bacteria?. Applied microbiology and biotechnology, 100(11), 4761-4771.
Spreer, E. (2017). Milk and dairy product technology (A. Mixa, Trans.). USA: Taylor
and Francis. (Original work published 1995). (p.p 259, 263).
Stanbury, P. F., Whitaker, A., and Hall, S. J. (2016). Principles of fermentation
technology (3rd ed.). UK: Elsevier. (p.p 227, 368, 376-378).
Stephanopoulos, G. N., Aristidou, A. A., and Nielsen, J. (1998). Metabolic
Engineering: Principles and Methodologies. San Diego, CA, USA: Academic Press.
(p 236).
Sternberg, M. (1976). Microbial rennets. In D. Perlman (Ed.). Advances in Applied
Microbiology (Vol. 20). New York: Academic Press, INC. (pp. 148-150).
Streets, B. W., and Ingle, M. B. (1972). The effect of temperature on spore
germination and growth of Mucor miehei in submerged culture. Canadian journal of
microbiology, 18(7), 975-979.
Subramaniyam, R., and Vimala, R. (2012). Solid state and submerged fermentation
for the production of bioactive substances: a comparative study. International journal
of science and nature, 3(3), 480-486.
Sumantha, A., Larroche, C., and Pandey, A. (2006). Microbiology and industrial
biotechnology of food-grade proteases: A perspective. Food Technology and
Biotechnology, 44(2), 211-220.Snyman, C., Theron, L. W., and Divol, B. (2019). Understanding the regulation of
extracellular protease gene expression in fungi: a key step towards their
biotechnological applications. Applied microbiology and biotechnology, 103(14),
5517-5532.
Szecsi, P. B., and Harboe, M. (2013). Chymosin. In: N. D. Rawlings & G.
Salvesen. Handbook of Proteolytic Enzymes (3rd ed., Vol. 1). Oxford, UK: Academic
press. (pp. 37-38).
Tajik, N., Azin, M., Fallahpour, M., & Pourahmad, R. (2014). Mutagenesis by UV
and Nitrous Acid for increase of rennet production in Rhizomucor miehei. Biological
Journal of Microorganism, 3(10), 1-12.
Takó, M., Kotogán, A., Krisch, J., Vágvölgyi, C., Mondal, K. C., and Papp, T. (2015).
Enhanced production of industrial enzymes in Mucoromycotina fungi during solidstate
fermentation of agricultural wastes/by-products. Acta Biologica
Hungarica, 66(3), 348-360.
Taşkın, E., and Eltem, R. (2008). The enhancement of polygalacturonase and
polymethylgalacturonase production on solid-state conditions by Aspergillus
foetidus. Food Biotechnology, 22(3), 203-217.
Thakur, M. S., Karanth, N. G., and Nand, K. (1990a). Studies on the production of
microbial rennet by solid state fermentation. Transactions of the Mycological Society
of Republic of China, 5(1&2), 13-28.
Thakur, M. S., Karanth, N. G., and Nand, K. (1990b). Production of fungal rennet by
Mucor miehei using solid state fermentation. Applied microbiology and
biotechnology, 32(4), 409-413.
Thakur, M. S., Karanth, N. G., and Nand, K. (1993). Downstream processing of
microbial rennet from solid state fermented moldy bran. Biotechnology
advances, 11(3), 399-407.
Tipton, K. (2018). Translocases (EC 7): A new EC Class. Enzyme Nomenclature
News. Retrieved June 07, 2021 from https://www.enzyme-database.org/news.php#top
Torgerson, T., and Ochs, H. (2014). Genetics of Primary Immune Deficiencies. In: K.
E. Sullivan and E. R. Stiehm (Eds.). Stiehm’s Immune Deficiencies. UK: Academic
Press. (pp. 73-81).
Torgomyan, H., and Trchounian, A. (2015). The enhanced effects of antibiotics
irradiated of extremely high frequency electromagnetic field on Escherichia coli
growth properties. Cell biochemistry and biophysics, 71(1), 419-424.
Torres, E. M., Williams, B. R., and Amon, A. (2008). Aneuploidy: cells losing their
balance. Genetics, 179(2), 737-746.Tropp, B. E. (2014). Principles of Molecular Biology. Massachusetts, USA: Jones &
Bartlett Learning. (pp 319-321).
Twyman, R. M. (2018). Advanced molecular biology: A concise reference. Boca
Raton, USA: Taylor & Francis. (p 201).
Uniacke-Lowe, T., and Fox, P. F. (2017). Chymosin, pepsins and other aspartyl
proteinases: structures, functions, catalytic mechanism and milk-clotting properties.
In: P. L. H. McSweeney., P. F. Fox., P. D. Cotter., and D. W. Everett. Cheese:
Chemistry, physics and microbiology. Volume 1. General aspects (4th ed.). UK:
Elsevier Academic Press. (p 92).
United States Department of Agriculture. (2019a). USDA's FoodData Central.
Retrieved August 18, 2022 from https://fdc.nal.usda.gov/fdc-app.html#/fooddetails/
328637/nutrients
United States Department of Agriculture. (2019b). USDA's FoodData Central.
Retrieved April 23, 2022 from https://fdc.nal.usda.gov/fdc-app.html#/fooddetails/
169722/nutrients
Vágvölgyi, C., Vastag, M., Ács, K., and Papp, T. (1999). Rhizomucor tauricus: a
questionable species of the genus. Mycological Research, 103(10), 1318-1322.
Van Oort, M. (2010). Enzymes in food technology–introduction. In: R. J. Whitehurst.,
& M. Van Oort (Eds.). Enzymes in food technology (2nd ed.). Chinchester, UK:
Wiley-Blackwell. (pp 1-17).
Vechtomova, Y. L., Telegina, T. A., Buglak, A. A., and Kritsky, M. S. (2021). UV
radiation in DNA damage and repair involving DNA-photolyases and
cryptochromes. Biomedicines, 9(11), 1564.
Viniegra-González, G., Favela-Torres, E., Aguilar, C. N., de Jesus Rómero-Gomez,
S., Díaz-Godínez, G., and Augur, C. (2003). Advantages of fungal enzyme production
in solid state over liquid fermentation systems. Biochemical Engineering
Journal, 13(2-3), 157-167.
Visser, S. (1993). Proteolytic Enzymes and Their Relation to Cheese Ripening and
Flavor: An Overview. Journal of Dairy Science, 76(1), 329–350.
Walther, B., Schmid, A., Sieber, R., and Wehrmuller, K. (2010). Cheese in nutrition
and health. Medicine& Nutrition,46, 38-51.
Wang, S. L., Chen, Y. H., and Yen, Y. H. (2005). Purification and characterization of
a serine protease extracellularly produced by Aspergillus fumigatus in a shrimp and
crab shell powder medium. Enzyme and Microbial Technology, 36(5-6), 660-665.Wang, L., and Yang, S. T. (2007). Solid state fermentation and its applications. In: S.
T. Yang (Ed.). Bioprocessing for value-added products from renewable
resources: new technologies and applications. Netherlands: Elsevier. (pp. 473-474).
Wang, S., Zhang, P., Xue, Y., Yan, Q., Li, X., and Jiang, Z. (2021). Characterization
of a Novel Aspartic Protease from Rhizomucor miehei Expressed in Aspergillus niger
and Its Application in Production of ACE-Inhibitory Peptides. Foods, 10(12), 2949,
1-12.
Webb, E. C. (1992). Enzyme nomenclature 1992. Recommendations of the
Nomenclature Committee of the International Union of Biochemistry and Molecular
Biology on the Nomenclature and Classification of Enzymes. San Diego: Academic
Press. (p.p 371, 404).
Whitaker, A. (1992). Actinomycetes in submerged culture. Applied biochemistry and
biotechnology, 32(1), 23-35.
Williams, J. A. (2004). Pancreatic Digestive Enzymes. In: L. R. Johnson
(Ed.). Encyclopedia of gastroenterology (Vol. 2). Oxford: Academic Press. (p 49).
Wium, H., Pedersen, P. S., and Qvist, K. B. (2003). Effect of coagulation conditions
on the microstructure and the large deformation properties of fat-free Feta cheese
made from ultrafiltered milk. Food hydrocolloids, 17(3), 287-296.
Wu, M., Tang, C., Li, J., Zhang, H., and Guo, J. (2011). Bimutation breeding of
Aspergillus niger strain for enhancing β-mannanase production by solid-state
fermentation. Carbohydrate research, 346(14), 2149-2155.
Yang, Y., Iwamoto, A., Kumrungsee, T., Okazaki, Y., Kuroda, M., Yamaguchi, S.,
and Kato, N. (2017). Consumption of an acid protease derived from Aspergillus
oryzae causes bifidogenic effect in rats. Nutrition Research, 44, 60-66.
Yasuhara, A., Ogawa, A., Tanaka, T., Sakiyama, T., and Nakanishi, K. (1994).
Production of neutral protease from Aspergillus oryzae by a novel cultivation method
on a microporous membrane. Journal of Biotechnology techniques, 8(4), 249-254.
Zanoelo, F. F., Giannesi, G. C., and Cabral, H. (2014). Proteolytic enzymes:
biochemical properties, production and biotechnological application. In: M. L. T. M
Polizeli., and M. Rai (Eds.). Fungal Enzymes. Boca Raton, FL: CRC Press. (P. 101).
Zhang, D., Palmer, J., Teh, K. H., Calinisan, M. M. A., and Flint, S. (2020). Milk fat
influences proteolytic enzyme activity of dairy Pseudomonas species. International
Journal of Food Microbiology, 320, 108543, 1-7.Zhang, W., Liu, F., Yang, M., Liang, Q., Zhang, Y., Ai, D., and An, Z. (2014).
Enhanced β-galactosidase production of Aspergillus oryzae mutated by UV and
LiCl. Preparative Biochemistry and Biotechnology, 44(3), 310-320.
Zhang, W., Zhang, Z., and Yao, T. (2016). Enhanced Milk-Clotting Enzyme
Production of Mucor Miehei Mutated by UV and LiCl. International Conference on
Biomedical and Biological Engineering. 62, 404-409.
Zheng, X., Shi, X., and Wang, B. (2021). A review on the general cheese processing
technology, flavor biochemical pathways and the influence of yeasts in
cheese. Frontiers in Microbiology, 12, 703284, 1-17.
Zhou, Y., Han, L. R., He, H. W., Sang, B., Yu, D. L., Feng, J. T., and Zhang, X.
(2018). Effects of agitation, aeration and temperature on production of a novel
glycoprotein GP-1 by Streptomyces kanasenisi ZX01 and scale-up based on
volumetric oxygen transfer coefficient. Molecules, 23(1), 125.