Do aeration conditions affect arsenic and phosphate accumulation and phosphate transporter expression in rice (Oryza sativa L.)?
2018
Wu, Chuan | Wang, Qiongli | Xue, Shengguo | Pan, Weisong | Lou, Laiqing | Li, Daojun | Hartley, William
Widespread contamination of rice with arsenic (As) has revealed a major exposure pathway to humans. The present study aimed to investigate the effects of oxygen in the rhizosphere on phosphate (P) transporter (for arsenate transportation) expressions, on As and P accumulation and As speciation in four rice genotypes. Oxygenation marginally increased root and shoot length. Total As concentrations in rice roots were dramatically reduced following aeration compared to stagnant treatments (p < 0.001). Aeration treatments significantly increased arsenate while reducing arsenite concentrations in roots (p < 0.001). Root arsenite concentrations were 1.5–2.5 times greater in stagnant than in aeration treatments. Total P concentrations in rice roots were dramatically increased following aeration compared to stagnant treatments. The relative abundance of phosphate transporter (inorganic phosphate transporter and phosphate/H⁺ symporter family protein) expressions showed downregulation in aeration treatments, particularly for SY-9586, XWX-17, and XWX-12 in inorganic phosphate transporter expressions and XWX-17 in phosphate/H⁺ symporter family protein expression (p < 0.05). The relative abundance of phosphate carrier protein expressions were relatively higher than the other phosphate transporters, showing upregulation in aeration treatments.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par National Agricultural Library
Découvrez la collection de ce fournisseur de données dans AGRIS