Prediction of hydrophobic organic compound partition to algal organic matter through the growth cycle of Microcystis aeruginosa
2021
Wei, Peiyun | Fu, Heyun | Xu, Zhaoyi | Zhu, Dongqiang | Qu, Xiaolei
Algal organic matter (AOM) is an important source for the dissolved organic matter (DOM) pool in aquatic systems, particularly in eutrophic waters. In this study, we reported the dynamic pattern of AOM hydrophobicity during the growth cycle of Microcystis aeruginosa using the partition coefficients of AOM in the aqueous two-phase system (KATPS) as a simple quantitative measure. AOM hydrophobicity had significant and non-monotonic changes during the growth cycle. It increased in the lag and early exponential phases, then decreased in the late exponential and stationary phases, and rebounded in the decline phase. AOM hydrophobicity determined using the resin fractionation, SUVA₂₅₄, and nuclear magnetic resonance methods shared similar non-monotonic pattern. Nevertheless, the correlations among these indicators were poor. The partition behavior of polycyclic aromatic hydrocarbons and chlorobenzenes to AOM was assessed based the KATPS dataset and the two-phase system (TPS) model. The TPS model showed good prediction power for the partition behavior of AOM with an RMSE of 0.23, suggesting that it was applicable to AOM from Microcystis aeruginosa. Our results indicate that algae activity will influence the overall hydrophobicity of the DOM pool depending on the growth phase, resulting in changes in the bioavailability of hydrophobic organic compounds in aquatic systems.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par National Agricultural Library
Découvrez la collection de ce fournisseur de données dans AGRIS