Electrocatalytical oxidation of arsenite by reduced graphene oxide via in-situ electrocatalytic generation of H2O2
2019
Li, Xuheng | Liu, Feng | Zhang, Weifang | Lü, Hongbo | Zhang, Jing
Preoxidation of As(III) to As(V) is required for the efficient removal of total arsenic in the treatment of wastewater. In this work, the electro-Fenton oxidation of As(III) with a high efficiency was successfully achieved by using the system of the stainless steel net (SSN) coating with reduced graphene oxide (RGO@SSN) as the cathode and stainless steel net (SSN) as the sacrificial anode. The RGO@SSN was synthesized by electrophoretic deposition-annealing method. The carbon disorder and defects of RGO resulted from the remained oxygen-containing functional groups facilitated the electrocatalytically active sites for two-electron oxygen reduction reaction (ORR). A high concentration (up to 1000 μmol/L) of H₂O₂ was in-situ produced through two-electron oxygen reduction reaction of electro-catalysis, and then served as the electro-Fenton reagent for the oxidation of As(III). HO generated by H₂O₂ participating the electro-Fenton reaction or decomposed at the surface of RGO@SSN cathode at acid condition endowed the strong oxidizing ability for As(III). The electro-Fenton equipped with RGO@SSN cathode has a promising application in the oxidation and removal of organic or inorganic pollutants in wastewater.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par National Agricultural Library
Découvrez la collection de ce fournisseur de données dans AGRIS