Modelling of simultaneous nitrogen and thiocyanate removal through coupling thiocyanate-based denitrification with anaerobic ammonium oxidation
2019
Chen, Xueming | Yang, Linyan | Sun, Jing | Dai, Xiaohu | Ni, Bing-Jie
Thiocyanate (SCN⁻)-based autotrophic denitrification (AD) has recently been demonstrated as a promising technology that could be integrated with anaerobic ammonium oxidation (Anammox) to achieve simultaneous removal of nitrogen and SCN⁻. However, there is still a lack of a complete SCN⁻-based AD model, and the potential microbial competition/synergy between AD bacteria and Anammox bacteria under different operating conditions remains unknown, which significantly hinders the possible application of coupling SCN⁻-based AD with Anammox. To this end, a complete SCN⁻-based AD model was firstly developed and reliably calibrated/validated using experimental datasets. The obtained SCN⁻-based AD model was then integrated with the well-established Anammox model and satisfactorily verified with experimental data from a system coupling AD with Anammox. The integrated model was lastly applied to investigate the impacts of influent NH₄⁺-N/NO₂⁻-N ratio and SCN⁻ concentration on the steady-state microbial composition as well as the removal of nitrogen and SCN⁻. The results showed that the NH₄⁺-N/NO₂⁻-N ratio in the presence of a certain SCN⁻ level should be controlled at a proper value so that the maximum synergy between AD bacteria and Anammox bacteria could be achieved while their competition for NO₂⁻ would be minimized. For the simultaneous maximum removal (>95%) of nitrogen and SCN⁻, there existed a negative relationship between the influent SCN⁻ concentration and the optimal NH₄⁺-N/NO₂⁻-N ratio needed.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par National Agricultural Library
Découvrez la collection de ce fournisseur de données dans AGRIS