Non-Interacting Molecules as Innate Structural Probes in Surface Plasmon Resonance
2013
Schoch, Rafael L. | Lim, Roderick Y. H.
Determining the structural parameters of a molecular layer remains an unresolved problem in surface plasmon resonance (SPR). Given that molecular form and function are intimately coupled, a breakthrough in this area could be of considerable benefit to the study of protein and/or polymer-decorated material interfaces that are ubiquitous in biology and technology. Here, we describe how noninteracting molecules function as innate structural probes that “feel” the intrinsic exclusion volume of a surface-tethered molecular layer in SPR. Importantly, this is noninvasive and provides a means to bypass the refractive index (RI) constraint that convolutes and hinders SPR thickness measurements. To show proof-of-concept, we use BSA molecules in solution to measure the thicknesses of polyethylene glycol (PEG) molecular brushes as a function of molecular weight. The SPR-acquired brush thicknesses scale with PEG hydrodynamic diameter and are in good agreement with atomic force microscopy force–distance measurements. Theoretical treatments that account for changes in the evanescent field decay length at the metal–dielectric interface indicate that the method is most appropriate for low RI layers with an estimated maximal error of ±15% in the thickness due to the RI constraint. Such in situ thickness measurements can be easily incorporated into routine SPR binding assays for investigating mesoscopic structure–function correlations of diverse molecular layers (i.e., biointerfaces).
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par National Agricultural Library
Découvrez la collection de ce fournisseur de données dans AGRIS