The cyclic electron pathways around photosystem I in Chlamydomonas reinhardtii as determined in vivo by photoacoustic measurements of energy storage
1994
Ravenel, J. | Peltier, G. | Havaux, M.
The photoacoustic technique was used to measure energy storage by cyclic electron transfer around photosystem I in intact Chlamydomonas reinhardtii cells illuminated with far-red light (>715 nm). The in-vivo cyclic pathway was characterized by investigating the effects of various chemicals on energy storage. Participation of plastoquinone and ferredoxin in the cyclic electron flow was confirmed by the complete suppression of energy storage in the presence of the plastoquinol antagonist 2,5-dibromo-3-methyl-6-isopropyl-p benzoquine (DBMIB) and the ferredoxin inhibitors/competitors methylviologen, phenylmercuric acetate and p-benzoquinone. Two alternative electron cycles are demonstrated to operate in vivo. One cycle is sensitive to antimycin A, myxothiazol and 2-(n-heptyl)-4-hydroxyquinoline N-oxide (HQNO) and is catalyzed by ferredoxin which reduces plastoquinone through a route involving cytochrome b6 and its protonmotive Q-cycle. The other cycle is unaffected by the above-mentioned inhibitors but is sensitive to N-ethylmaleimide (NEM), an inhibitor of the ferredoxin-NADP reductase, and 2'-monophosphoadenosine-5'-diphosphoribose (PADR), an analogue of NADP, showing that the electron recycling was mediated by NADPH. Possibly, electrons enter the plastoquinone pool through the action of a NAD(P)H dehydrogenase, which is insensitive to classical inhibitors of the mitochondrial NADH dehydrogenase. Loss of energy storage by photosystem-I-driven cyclic electron transfer in far-red light was observed only when antimycin A, myxothiazol or HQNO was used in combination with NEM or PADR. Analysis of the light-intensity dependence and the rate of in-vivo cyclic electron transfer in the presence of various inhibitors indicates that the NADPH-dependent electron-cycle is the preferential cyclic pathway in Chlamydomonas cells illuminated with far-red light.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par National Agricultural Library
Découvrez la collection de ce fournisseur de données dans AGRIS