Inhalation bioaccessibility of multi-class organic pollutants associated to atmospheric PM2.5: Correlation with PM2.5 properties and health risk assessment
2022
Sánchez-Piñero, Joel | Novo-Quiza, Natalia | Pernas-Castaño, Cristina | Moreda-Piñeiro, Jorge | Muniategui-Lorenzo, Soledad | López-Mahía, Purificación
Inhalation exposure to fine particulate matter (PM₂.₅) represents a global concern due to the adverse effects in human health. In the last years, scientific community has been adopted the assessment of the PM₂.₅-bound pollutant fraction that could be released (bioaccessible fraction) in simulated lung fluids (SLFs) to achieve a better understanding of PM risk assessment and toxicological studies. Thus, bioaccessibility of 49 organic pollutants, including 18 polycyclic aromatic hydrocarbons (PAHs), 12 phthalate esters (PAEs), 11 organophosphorus flame retardants (OPFRs), 6 synthetic musk compounds (SMCs) and 2 bisphenols in PM₂.₅ samples was evaluated. The proposed method consists of a physiologically based extraction test (PBET) by using artificial lysosomal fluid (ALF) to obtain bioaccessible fractions, followed by a vortex-assisted liquid-liquid microextraction (VALLME) and a final analysis by programmed temperature vaporization-gas chromatography-tandem mass spectrometry (PTV-GC-MS/MS). The highest inhalation bioaccessibility ratio was found for bisphenol A (BPA) with an average of 83%, followed by OPFRs, PAEs and PAHs (with average bioaccessibilities of 68%, 41% and 34%, respectively). Correlations between PM₂.₅ composition (major ions, trace metals, equivalent black carbon (eBC) and UV-absorbing particulate matter (UVPM)) and bioaccessibility ratios were also assessed. Principal Component Analysis (PCA) suggested that PAHs, PAES and OPFRs bioaccessibility ratios could be positively correlated with PM₂.₅ carbonaceous content. Furthermore, both inverse and positive correlations on PAHs, PAEs and OPFRs bioaccessibilites could be accounted for some major ions and metal (oid)s associated to PM₂.₅, whereas no correlations comprising considered PM₂.₅ major ions and metal (oid)s contents and BPA bioaccessibility was observed. In addition, health risk assessment of target PM₂.₅-associated PAHs via inhalation was assessed in the study area considering both total and bioaccessible concentrations, being averaged human health risks within the safe carcinogenic and non-carcinogenic levels.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par National Agricultural Library
Découvrez la collection de ce fournisseur de données dans AGRIS