Effects of no-tillage on greenhouse gas emissions in maize fields in a semi-humid temperate climate region
2022
Li, Zhaoxin | Zhang, Qiuying | Li, Zhao | Qiao, Yunfeng | Du, Kun | Tian, Chao | Zhu, Nong | Leng, Peifang | Yue, Zewei | Cheng, Hefa | Chen, Gang | Li, Fadong
Agricultural tillage practices have a significant impact on the generation and consumption of greenhouse gases (GHGs), the primary causes of global warming. Two tillage systems, conventional tillage (CT) and no-tillage (NT), were compared to evaluate their effects on GHG emissions in this study. Averaged from 2018 to 2020, significant decreases of CO₂ and N₂O emissions by 7.4% and 51.1% were observed in NT as compared to those of CT. NT was also found to inhibit the soil CH₄ uptake. In this study, soil was a source of CO₂ and N₂O but a sink for CH₄. The effect of soil temperature on the fluxes of CO₂ was more pronounced than that of soil moisture. However, soil temperature and soil moisture had a weak correlation with CH₄ and N₂O flux variations. As compared to CT, NT did not affect maize yields but significantly reduced global warming potential (GWP) by 8.07%. For yield-scaled GWP, no significant difference was observed in NT (9.63) and CT (10.71). Taken together, NT was an environment-friendly tillage practice to mitigate GHG emissions in the soil under the tested conditions.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par National Agricultural Library
Découvrez la collection de ce fournisseur de données dans AGRIS