Novel predictors of soil genesis following natural weathering processes of bauxite residues
2016
Zhu, Feng | Xue, Shengguo | Hartley, William | Huang, Ling | Wu, Chuan | Li, Xiaofei
Bauxite residue often has chemical and physical limitations to support plant growth, and improving its matrix properties is crucial to support sustainable vegetation in the long term. Spontaneous vegetation colonization on deposits in Central China, over a period of 20 years, has revealed that natural weathering processes may convert bauxite residue to a soil-like medium. Residue samples from different stacking ages were collected to determine the effect of natural processes on matrix properties over time. It was demonstrated that natural processes decreased pH (10.98 to 9.45), electrical conductivity (EC) (3.73 to 0.36 mS/cm), and exchangeable sodium percentage (ESP) (72.51 to 28.99 %), while increasing bulk density (1.91 to 1.39 g/cm³), improving the mean weight diameter (MWD) of water-stable aggregates (0.24 to 0.52 mm), and the proportion of >0.25-mm water-stable aggregates (19.91 to 50.73 %). The accumulation of organic carbon and the reduction of ESP and exchangeable Na had positive effects on soil aggregate formation, while exchangeable Ca and Mg were significantly beneficial to aggregation of water-stable aggregates. Climate, stacking time, and biological factors appear to improve the structure of bauxite residue. Our findings demonstrate soil genesis occurring following natural weathering processes of bauxite residues over time.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par National Agricultural Library
Découvrez la collection de ce fournisseur de données dans AGRIS