Carbon and nitrogen metabolism in arbuscular mycorrhizal maize plants under low-temperature stress
2015
Zhu, Xian-Can | Song, Feng-Bin | Liu, Fu-Lai | Liu, Sheng-Qun | Tian, Chun-Jie
Effects of the arbuscular mycorrhizal (AM) fungus Glomus tortuosum on carbon (C) and nitrogen (N) metabolism of Zea mays L. grown under low-temperature stress was investigated. Maize plants inoculated or not inoculated with AM fungus were grown in a growth chamber at 25°C for 4 weeks and subsequently subjected to two temperature treatments (15°C, low temperature; 25°C, ambient control) for 2 weeks. Low-temperature stress significantly decreased AM colonisation, plant height and biomass. Total N content and activities of glutamate oxaloacetate transaminase and glutamate pyruvate transaminase of AM plants were higher than those of non-AM plants. AM plants had a higher net photosynthetic rate (Pn) than non-AM plants, although low temperature inhibited the Pn. Compared with non-AM plants, AM plants exhibited higher leaf soluble sugars, reducing sugars, root sucrose and fructose contents, and sucrose phosphate synthase and amylase activities at low temperature. Moreover, low-temperature stress increased the C:N ratio in the leaves of maize plants, and AM colonisation decreased the root C:N ratio. These results suggested a difference in the C and N metabolism of maize plants at ambient and low temperature regimes. AM symbiosis modulated C metabolic enzymes, thereby inducing an accumulation of soluble sugars, which may have contributed to an increased tolerance to low temperature, and therefore higher Pn in maize plants.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par National Agricultural Library
Découvrez la collection de ce fournisseur de données dans AGRIS