Effects of sulfide reduction on adsorption affinities of colloidal graphene oxide nanoparticles for phenanthrene and 1-naphthol
2015
Wang, Fanfan | Wang, Fang | Zhu, Dongqiang | Chen, Wei
The abiotic transformation of nanomaterials in the natural environment can significantly affect their fate, transport, and effects. We observed that the adsorption affinities of graphene oxide nanoparticles (GONPs) for both phenanthrene and 1-naphthol were profoundly enhanced in the presence of sulfide, an environmentally relevant reductant, with doses as low as 0.5 mM Na2S per 10 mg/L GONPs. For phenanthrene adsorption enhancement was predominantly caused by the increased surface hydrophobicity from Na2S treatment. For 1-naphthol, however, adsorption enhancement was caused mainly by the conversion of the epoxy/ether groups on the surface of graphene oxide (GO) to the phenolic hydroxyl and carbonyl groups, which allowed more significant H-bonding between 1-naphthol and GONPs. The findings of this study underline that abiotic transformation of GO not only affects the stability and mobility of GONPs, but also influences the adsorptive interactions between GONPs and environmental contaminants, and consequently, may increase the environmental risks of GONPs.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par National Agricultural Library
Découvrez la collection de ce fournisseur de données dans AGRIS