Research on direct shear strength characteristics of mechanically biologically treated waste
2021
Zhang, Zhenying | Zhang, Jiahe | Wang, Qiaona | Wang, Min | Nie, Chengyu
Mechanically and biologically treated (MBT) waste has significant characteristics such as high stability and low moisture content, which can reduce water, soil, and gas pollution in subsequent treatments. This pre-treatment method is environmentally friendly and sustainable and has become a popular research topic in the field of environmental geotechnical engineering. Using a direct shear test apparatus and five shearing rates (0.25, 1, 5, 10, and 20 mm/min), the shear strength characteristics of MBT waste at the Hangzhou Tianziling Landfill were studied. The results indicate the following: (1) With the increase in horizontal shear displacement, the shear stress of MBT waste gradually increases without a peak stress phenomenon, which is a displacement hardening curve; (2) the shear strength increases with an increase in the shearing displacement rate, and the sensitivity coefficient is 0.64–2.66; (3) a shear strength, shearing rate, and normal stress correlation model is established, and the model has a high degree of fit with the overall experimental data; (4) cohesion (c), internal friction angle (φ), and the logarithm of the shearing rate are linear; (5) the range of c of MBT waste is 22.32–39.51 kPa, and φ is 64.24–68.52°. Meanwhile, the test data are compared with the test data in the literature. The ranges of c and φ of municipal solid waste determined via the shear test are found to be wider than those of MBT waste. The results of this study can provide a reference for the stability calculation of MBT landfills.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par National Agricultural Library
Découvrez la collection de ce fournisseur de données dans AGRIS