Polycyclic aromatic hydrocarbon removal from subsurface soil mediated by bacteria and archaea under methanogenic conditions: Performance and mechanisms
2022
Gou, Yaling | Song, Yun | Yang, Sucai | Yang, Yan | Cheng, Yanan | Li, Jiabin | Zhang, Tengfei | Cheng, Yanjun | Wang, Hongqi
In situ anoxic bioremediation is an easy-to-use technology to remediate polycyclic aromatic hydrocarbon (PAH)-contaminated soil. Degradation of PAHs mediated by soil bacteria and archaea using CO₂ as the electron acceptor is an important process for eliminating PAHs under methanogenic conditions; however, knowledge of the performance and mechanisms involved is poorly unveiled. In this study, the effectiveness and efficiency of NaHCO₃ (CO₂) as an electron acceptor to stimulate the degradation of PAHs by bacteria and archaea in highly contaminated soil were investigated. The results showed that CO₂ addition (EC2000) promoted PAH degradation compared to soil without added CO₂ (EC0), with 4.18%, 9.01%–8.05%, and 6.19%–12.45% increases for 2-, 3- and 4-ring PAHs after 250 days of incubation, respectively. Soil bacterial abundances increased with increasing incubation time, especially for EC2000 (2.90 × 10⁸ g⁻¹ soil higher than EC0, p < 0.05). Different succession patterns of the soil bacterial and archaeal communities during PAH degradation were observed. According to the PCoA and ANOSIM results, the soil bacterial communities were greatly (ANOSIM: R = 0.7232, P = 0.001) impacted by electron acceptors, whereas significant differences in the archaeal communities were not observed (ANOSIM: R = 0.553, P = 0.001). Soil bacterial and archaeal co-occurrence network analyses showed that positive correlations outnumbered the negative correlations throughout the incubation period for both treatments (e.g., EC0 and EC2000), suggesting the prevalence of coexistence/cooperation within and between these two domains rather than competition. The higher complexity, connectance, edge, and node numbers in EC2000 revealed stronger linkage and a more stable co-occurrence network compared to EC0. The results of this study could improve the knowledge on the removal of PAHs and the responses of soil bacteria and archaea to CO₂ application, as well as a scientific basis for the in situ anoxic bioremediation of PAH-contaminated industrial sites.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par National Agricultural Library
Découvrez la collection de ce fournisseur de données dans AGRIS