Efficient urine removal, simultaneous elimination of emerging contaminants, and control of toxic chlorate in a photoelectrocatalytic-chlorine system
2020
Fang, Fei | Zhang, Yan | Bai, Jing | Li, Jinhua | Mei, Xiaojie | Zhou, Changhui | Zhou, Mengyang | Zhou, Baoxue
Urine, which is an important waste biomass resource, is the main source of nitrogen in sewage and contains large quantities of emerging contaminants (ECs). In this study, we propose a new method to efficiently remove urine, simultaneously eliminate ECs, and control the generation of toxic chlorate during urine treatment using a photoelectrocatalytic-chlorine (PEC-Cl) system. A type-II heterojunction of WO₃/BiVO₄ was used as a photoanode to generate chlorine radicals (Cl•) by decreasing the oxidation potential of WO₃ valence band for the highly selective conversion of urine to N₂ and the simultaneous degradation of ECs in an efficient manner. The method presented surprising results. It was observed that the amount of toxic chlorate was significantly inhibited by circumventing the over-oxidation of Cl⁻ by holes or hydroxyl radicals (•OH). Moreover, the removal of urea nitrogen reached 97% within 90 min, while the degradation rate of trimethoprim in urine was above 98.6% within 60 min, which was eight times more than that in the PEC system (12.1%). Compared to the bare WO₃ photoanode, the toxic chlorate and nitrate generated by the WO₃/BiVO₄ heterojunction photoanode decreased by 61% and 44%, respectively. Thus, this study provides a safe, efficient, and environmentally-friendly approach for the disposal of urine.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par National Agricultural Library
Découvrez la collection de ce fournisseur de données dans AGRIS