Non-covalent assembled laccase-graphene composite: Property, stability and performance in beta-blocker removal
2019
Immobilization of enzymes on carriers have been pursued to make the enzyme stable, reusable and obtaining even better enzyme activity. Due to the highly stable two-dimensional layer structure, large surface area and pore volume, graphene materials were seemed as ideal carrier for enzyme immobilization. In this paper, pristine few layer graphene (FLG) was applied to interact with laccase to synthesize laccase-graphene composite and the results of AFM, FT-IR and adsorption isotherm suggested that laccase was loaded on the FLG with a very high loading dosage (221.1 mg g⁻¹). Based on the measured interaction force and binding type between laccase and graphene, we proposed that the great enzyme loading on FLG is likely due to the non-covalent π-π stacking in addition to the large surface area of FLG. The composite has better stability to the variance of pH and storage temperature than free laccase. The synthesized composite can effectively transform beta-blocker labetalol with an enhanced efficiency, though the possible reaction pathways kept not changing. We further performed molecular simulation study on the crystal structure variation of laccase binding on FLG and proposed that catalytic activity enhancement may be attributed to the more exposure extent of the catalytic center of laccase. In addition, the laccase-graphene composite can be reused more than ten times in catalyzing the labetalol removal.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par National Agricultural Library
Découvrez la collection de ce fournisseur de données dans AGRIS