The size-dependent effects of silica nanoparticles on endothelial cell apoptosis through activating the p53-caspase pathway
2018
Wang, Wuxiang | Zeng, Can | Feng, Yuqin | Zhou, Furong | Liao, Fen | Liu, Yuanfeng | Feng, Shaolong | Wang, Xinming
With the growing production and applications of silica nanoparticles (SiNPs), human exposure to these nanoparticles continues to increase. However, the possible hazards that SiNP exposure may pose to human cardiovascular system and the underlying mechanisms remain unclear. In the present study, the flow cytometry was employed to investigate the potential of four sizes (10, 25, 50, 100 nm) of SiNPs to induce the apoptosis of human umbilical vein endothelial cells (HUVECs) in culture. The apoptotic pathway was also explored through the determination of the protein expression and/or activation of p53, Bcl-2, Bax, caspases-9, -7, -3, and PARP by western blot. The results showed that all the four sizes of SiNPs could significantly elicit apoptosis in HUVECs at the tested concentrations (1, 5, 25 μg/mL), compared with the negative control (p < 0.05, p < 0.01). Moreover, the apoptotic rates were increased with the elevating levels and decreasing sizes of administrative SiNPs, showing both dose- and size-dependent effect relationships. Interestingly, the enhancing phosphorylation of p53 protein (Ser15), decreasing ratio of Bcl-2/Bax protein, and elevating activation of the downstream proteins, caspase-9, -7, -3 and PARP, were also observed with the decreasing sizes of tested SiNPs, indicating that the p53-caspase pathway is the main way of the SiNP-mediated apoptosis in HUVECs and that the size is an important parameter that determines the SiNPs' potential to induce cellular response.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par National Agricultural Library
Découvrez la collection de ce fournisseur de données dans AGRIS