Stimulation by abscisic acid of the activity of phosphoenolpyruvate carboxylase in leaf disks of Amaranthus hypochondriacus L., C4 plant: role of pH and protein levels
2017
Aloor, Bindu Prasuna | Avasthi, Uday Kiran | Raghavendra, Agepati S.
C₄ plants can more efficiently fix carbon in drought, high temperatures, and limitations of nitrogen or CO₂. Primary carboxylation is mediated by phosphoenolpyruvate carboxylase (PEPC, 4.1.1.31) in mesophyll cytosol of C₄ plants. Studies on hormonal regulation of C₄ PEPC have been quite limited. We have examined the activity/regulation of PEPC by abscisic acid (ABA), a plant hormone, in the leaves of Amaranthus hypochondriacus. PEPC activity was enhanced upon 1-h incubation with 20 μM ABA by about 30% in dark and more than 2-fold in light. Glucose-6-phosphate activation of PEPC was enhanced, and sensitivity to L-malate was decreased after ABA treatment. Butyric acid (a weak acid) decreased PEPC activity and restricted the stimulation by ABA. In contrast, methylamine (an alkalinizing agent) increased the PEPC activity and enhanced the effect of ABA. ABA increased the levels of PEPC protein as well as its mRNA. Butyric acid/methylamine modulated the changes induced by ABA of PEPC protein and mRNA levels, indicating that acidification/alkalinization of leaf disks was very important. Our results emphasize the marked modulation of PEPC in C₄ plants, by ABA. Such modulation by ABA could be significant when C₄ plants are under water stress, when ABA is known to accumulate. When present, cycloheximide decreased the PEPC protein levels and restricted the extent of activation by ABA. We conclude that the enhancement by ABA of PEPC activity depends on cellular alkalinization as well as elevated PEPC protein levels.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par National Agricultural Library
Découvrez la collection de ce fournisseur de données dans AGRIS