Redox activity and in vitro bioactivity of the water-soluble fraction of urban particulate matter in relation to particle size and chemical composition
2016
Velali, Ekaterini | Papachristou, Eleni | Pantazaki, Anastasia | Choli-Papadopoulou, Theodora | Planou, Styliani | Kouras, Athanasios | Manoli, Evangelia | Besis, Athanasios | Voutsa, Dimitra | Samara, Constantini
Chemical and toxicological characterization of the water-soluble fraction of size-segregated urban particulate matter (PM) (<0.49, 0.49–0.97, 0.97–1.5, 1.5–3.0, 3.0–7.2 and >7.2 μm) was carried out at two urban sites, traffic and urban background, during the cold and the warm period. Chemical analysis of the water-soluble PM fraction included ionic species (NO3−, SO42−, Cl⁻, Na⁺, NH4⁺, K⁺, Mg²⁺, Ca²⁺), water-soluble organic carbon (WSOC), and trace elements (Al, As, Ba, Cd, Cr, Cu, Fe, Pb, Mn, Ni, Zn, Pt, Pd, Rh, Ru, Ir, Ca, and Mg). The dithiothreitol (DTT) assay was employed for the abiotic assessment of the oxidative PM activity. Cytotoxic responses were investigated in vitro by applying the mitochondrial dehydrogenase (MTT) and the lactate dehydrogenase (LDH) bioassays on human lung cells (MRC-5), while DNA damage was estimated by the single cell gel electrophoresis assay, known as Comet assay. The correlations between the observed bioactivity responses and the concentrations of water-soluble chemical PM constituents in the various size ranges were investigated. The results of the current study corroborate that short-term bioassays using lung human cells and abiotic assays, such as the DTT assay, could be relevant to complete the routine chemical analysis and to obtain a preliminary screening of the potential effects of PM-associated airborne pollutants on human health.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par National Agricultural Library
Découvrez la collection de ce fournisseur de données dans AGRIS