Revealing consensus gene pathways associated with respiratory functions and disrupted by PM2.5 nitrate exposure at bulk tissue and single cell resolution
2021
Zhang, Jushan | Cheng, Haoxiang | Wang, Dongbin | Zhu, Yujie | Yang, Chun | Shen, Yuan | Yu, Jing | Li, Yuanyuan | Xu, Shunqing | Song, Xiaolian | Zhou, Yang | Chen, Jia | Fan, Lihong | Jiang, Jingkun | Wang, Changhui | Hao, Ke
Nitrate is a major pollutant component in ambient PM₂.₅. It is known that chronic exposure to PM₂.₅ NO₃⁻ damages respiratory functions. We aim to explore the underlying toxicological mechanism at single cell resolution.We systematically conducted exposure experiments on forty C57BL/6 mice, assessed respiratory functions, and profiled lung transcriptome. . Afterward, we estimated the cell type compositions from RNA-seq data using deconvolution analysis. The genes and pathways associated with respiratory function and dysregulated by to PM₂.₅ NO₃⁻ exposure were characterized at bulk-tissue and single-cell resolution.PM₂.₅ NO₃⁻ exposure did not significantly modify the cell type composition in lung, but profoundly altered the gene expression within each cell type. At ambient concentration (22 μg/m³), exposure significantly (FDR<10%) altered 95 genes’ expression. Among the genes associated with respiratory functions, a large fraction (74.6–91.7%) were significantly perturbed by PM₂.₅ NO₃⁻ exposure. For example, among the 764 genes associated with peak expiratory flow (PEF), 608 (79.6%) were affected by exposure (p = 1.92e-345). Pathways known to play role in lung disease pathogenesis, including circadian rhythms, sphingolipid metabolism, immune response and lysosome, were found significantly associated with respiratory functions and disrupted by PM₂.₅ NO₃⁻ exposure.This study extended our knowledge of PM₂.₅ NO₃⁻ exposure’s effect to the levels of lung gene expression, pathways, lung cell type composition and cell specific transcriptome. At single cell resolution, we provided insights in toxicological mechanism of PM₂.₅ NO₃⁻ exposure and subsequent pulmonary disease risks.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par National Agricultural Library
Découvrez la collection de ce fournisseur de données dans AGRIS