Tungsten Contamination of Soils and Sediments: Current State of Science
2017
Datta, Saugata | Vero, Sara E. | Hettiarachchi, Ganga M. | Johannesson, Karen
Tungsten (W) is commonly employed as a non-toxic alternative to lead in a broad variety of industrial and military applications. However, correlations between environmental contamination through soil, water and airborne pathways, and biological effects such as epithelial damage, bioaccumulation, and trophic mobility, have led to its classification as an “emerging contaminant.” Of particular concern are recent clusters of childhood leukemia and lung cancer in the vicinity of tungsten mines and processing facilities. High environmental tungsten availability has also been associated with altered thyroid function, cardiovascular disease, and prolonged elevation of concentrations in blood, breath, and urine. Tungsten’s use as a replacement for lead (Pb) in military munitions has resulted in leaching of tungsten into soil and into soft tissues in which bullet fragments are embedded. Despite these associations, no consensus has been reached regarding the mechanisms by which tungsten affects the human body. Particularly confounding are the issues of co-toxicity with other known contaminants such as arsenic, cobalt, and cadmium, and differences resulting from the various methods of ingestion. The present paper summarizes the current behavior of tungsten in the environment, its occurrence within the pedosphere, biosphere, and atmosphere, and discusses its potential effects on exposed biota (especially humans). In particular, knowledge gaps are identified regarding the biological mechanisms of tungsten-related disease, which urgently require further elucidation in order to develop appropriate policies and management practices for the use of this element.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par National Agricultural Library
Découvrez la collection de ce fournisseur de données dans AGRIS