Impacts of Metal Contamination in Calcareous Waters of Deûle River (France): Water Quality and Thermodynamic Studies on Metallic Mobility
2010
Lourino-Cabana, B. | Lesven, L. | Billon, G. | Proix, N. | Recourt, P. | Ouddane, B. | Fischer, J. C. | Boughriet, A.
To evaluate adverse impacts of metal pollution originating from smelting activities on the aquatic ecosystem of Deûle river in northern France, water samples were collected from five selected stations along a contaminated region of this river (during two surveys: April-June 2005 and April-May 2007). All samples were analysed using inductively coupled plasma (ICP) atomic emission spectroscopy and/or ICP-mass spectrometry. Both the concentrations of dissolved and particulate elements were determined, and analytical data were compared with national and international water/particle quality guidelines as well as with some values reported in the literature for polluted rivers. For all the metals studied (i.e. Cd, Cr, Cu, Mn, Ni, Pb and Zn), our investigations showed that the effects of the dissolved phase on this aquatic medium were weak, according to water quality status established by US Environmental Protection Agency, USEPA (1994, 1999). Conversely, the levels of metals in suspended particulate matter were found to be much higher than local background contents and natural reference levels in French catchments. These levels were further quantified as “serious” contamination, i.e. above the “red” range that was previously elaborated by most existing metal-contamination scales in French basins of similar geology. The affinity of these metals for the particulate phase in Deûle waters follows the order: Cd >Cr > Pb > Zn = Mn > Cu > Ni. The trace metals released from anthropogenic activities were found to be partly bound to the reactive particulate phase, calcite, which is sensitive to physico-chemical variations occurring in the river ecosystem. To appraise the risk of ecotoxicity by metals, predictions on the ability to release metallic pollutants from calcite into waters were made successfully by testing three equilibrium geochemical speciation models (JCHESS, VISUAL MINTEQ and WINHUMIC) in which soluble organic matter was taken into account. Calculations showed that metal-water-calcite systems in Deûle River are close to thermodynamic equilibrium with generation of solid solutions, MeαCa₁₋αCO₃, by (co)precipitation and/or adsorption reactions. On the basis of results mentioned here, more measurements of river chemistry and assessments of predictive capabilities of chosen water-quality guidelines with time would be developed in aquatic and calcareous areas for controlled dredging operations or other treatment engineering works.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par National Agricultural Library
Découvrez la collection de ce fournisseur de données dans AGRIS