Polydopamine-coated polyethylene sieve plate as an efficient and convenient adsorption sink for the bioaccessibility prediction of PAHs in soils
2019
Fan, Yu-Han | Li, Xiao-Shui | Mou, Xiao-Xuan | Qin, Shi-Bin | Qi, Shi-Hua
Bioaccessibility measurements of polycyclic aromatic hydrocarbons (PAHs) in soils are significant for exposure risk assessment. The current physicochemical methods require tedious operation processes, underestimate the actual risks, or are unsuitable for high organic content soils. In this work, an efficient and convenient method based on polydopamine-coated polyethylene sieve plate (PDA@PESP) and hydroxypropyl-β-cyclodextrin (HPCD) was developed to predict the bioaccessibility of PAHs in multi-type soils. The PDA@PESP can be prepared via in situ self-polymerization, allowing to extract PAHs from HPCD solution quantitatively and rapidly. When applied to evaluate the bioaccessibility with PDA@PESP as an adsorption sink and HPCD as a diffusive carrier, the proposed method can significantly improve the extractable fraction of PAHs compared to single HPCD extraction in particular for high organic carbon content soil and high-ring PAHs. The desorption kinetics data indicated that the method can predict the bioaccessible fraction of PAHs. In addition, the method predicted a satisfactory accumulation into earthworms (Eisenia fetida) with a slope statistically approximated to 1. A highly significant linear regression (R2 = 0.95) was also found between the proposed method and Tenax desorption in historically contaminated soils, demonstrating that the method is an efficient and convenient approach for the bioaccessibility prediction of PAHs in soils.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par National Agricultural Library
Découvrez la collection de ce fournisseur de données dans AGRIS